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Abstract

�e h-index is a widespread evaluation measure of the quality of a scientist’s academic pub-
lications. It is a widely known measure, that is used in the scienti�c community in order to
quantify and evaluate the work of a scientist. It is very important for a researcher to produce
innovative and quality work, which will help the rest of the scienti�c community to develop
additional ideas that will lead to new discoveries and technologies. �us, based on the h-index,
new collaborations can be created between remarkable researchers, and projects and funding
can be allocated to appropriate scientists, who stand out in their �eld of study through their
work. In various situations there is a lack of data, many papers of a scientist are missing, and
in some papers the citations may not have been recently updated. Additionally, there is o�en
a dispersion of information, where a researcher’s publications are on di�erent sites and not
concentrated on the same web page. Taking into consideration all these factors, it becomes
di�cult to calculate the h-index, with the solution to this problem being given by machine
learning where with the use of appropriate models it can provide us with a reliable prediction
of the h-index, which will deviate as li�le as possible than its actual value.

�e goal of this thesis statement is to create a model that predicts the h-index of a scientist.
For the prediction of the h-index, we took into account the abstracts from all the papers in
which a scientist has participated, as well as the collaborations of each scientist with other
researchers for the co-authorship of an academic publication. To predict the h-index we tested
many machine learning models from classical to some custom and recently popular deep learn-
ing models. �e data were obtained from the Microso� Academic Data Collection and more
speci�cally from the Microso� Academic Graph, which is a huge project that collects a great
amount of data about the academic community. From this multitude of data, we received some
speci�c datasets which serve the purpose of our work. �e datasets we used consist mostly
of several Gigabytes of �les, making our task complicated. In addition to the data mining and
machine learning part, we had to manage big data in a smart and e�cient way, in a reasonable
time. �e chosen datasets were processed to create a graph of relations between scientists.
Based on this graph and the papers’ abstracts we extracted the appropriate features. �en,
�rstly using classical machine learning algorithms such as SVM, Decision Tree and secondly
training multi-layer perceptron model, but also deep learning models like graph neural net-
works and a custom deep learning neural network, we predicted as accurately as possible the
h-index of a researcher. �e custom deep learning neural network was the dominant model,
outperforming the e�ciency of our other models on the prediction task of h-index.
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Chapter 1

Introduction

Chapter 1 starts with the analysis of some introductory concepts and is followed by the problem

indication. Moreover, the goal of this dissertation is described and an initial exploration of the

data used is presented.

1.1 Introduction

Science is the pursuit and application of knowledge and understanding of the natural and

social world following a systematic methodology based on evidence. Researchers and scientists

want to generate innovative and bene�cial work, by unlocking and discovering the secrets

of our universe. A scientist tries to document, discover, interpret, and develop methods and

systems for the advancement of human knowledge, through scientist’s research into a speci�c

problem, concern, or issue. Research’s results are recorded and presented on a scienti�c paper.

A scienti�c paper’s format has been de�ned by centuries of developing tradition, editorial

practice, scienti�c ethics and the interplay of printing and publishing services. �e result of

this process is that virtually every scienti�c paper has a title, abstract, introduction, materials

and methods, results, interpretation of the results and references.

�e abstract is an essential part of a paper, because it summarizes the scope, the research

problem that is investigated, the basic method of the study and the results of the scienti�c

research which is described in a paper. �us, through the examination of a paper’s abstract

we can extract precious key information about the subject, the importance, and the �eld of

study of a paper. Never before have we had so many people whose sole purpose of work

1
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is to be�er understand how the world works. �erefore, an enormous amount of scienti�c

work and papers are published every year which should be evaluated on their credibility and

signi�cance. Moreover, the speed at which researchers can share and publish their studies has

increased signi�cantly. Today, researchers have the possibility to publish not only in an ever-

growing number of traditional venues, such as conferences and journals, but also in electronic

preprint repositories and in mega-journals that provide rapid publication times [4].

Over the years, a wide variety of metrics have been proposed, in order to quantify the impact

and the success of a paper. �e citation number of a particular paper is a common metric which

re�ects the quality of publication, counting the number of times an academic journal article

is cited by other authors’ papers. Citation counts are interpreted as measures of the quality

and in�uence of academic work [5]. It is widely believed that the more a paper has been

cited, the higher its impact and success are. Measuring the impact and success of an author

creates a more complicated situation since more variables must be taken under consideration.

We must examine citation counts of the author’s papers, the contribution of each author in a

speci�c paper, the number of authors that have collaborated for the composition of paper and

the number of papers which a scientist has published. Moreover, the publication record of an

author is in many cases the most important criterion for hiring and promotion decisions, and

for awarding grants. �erefore, institutes and administrators are o�en in need of quantitative

metrics that provide with an objective evaluation of authors, quantifying and qualifying their

work. A variety of indicators have been proposed in the past years [6–9]. However, it turns

out that not all aspects of an author’s scienti�c contribution can be estimated by the proposed

metrics. Currently, one of the most common criterion of an individual’s scienti�c impact is

perhaps the h-index [10].

1.1.1 �e H-index

In 2005, Jorge E. Hirsch, a physicist at UC San Diego, presented the h-index which gives infor-

mation about the productivity of a scientist and the citation impact of his or her publications

in one number (h is the number of publications with at least h citations) [10]. Hence, it re�ects

both the number of publications and the in�uence of each publication (i. e., number of citations

received). �e h-index is an author-level metric and it became popular relatively quickly. �is

metric correlates with obvious success indicators such as being accepted for research fellow-

ships and holding positions at top universities. Hirsch has demonstrated that this indicator has
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high predictive value for whether a scientist has won honors like National Academy member-

ship or the Nobel Prize [10].

Generally, the h-index correlates with other bibliometric indicators of ”signi�cance”. It is based

on the set of the scientist’s most cited papers and the number of citations that they have re-

ceived in other publications. �e index can also be applied to the productivity and impact of a

scholarly journal as well as a group of scientists, such as a department or university or country.

�e h-index is de�ned as the maximum value of h such that the given author or journal has

published h papers that have each been cited at least h times, and their other papers are less

frequently cited [11]. �e index works best when comparing scholars working in the same

�eld, since citation conventions di�er widely among di�erent �elds. �e h-index grows as ci-

tations accumulate and thus it depends on the ”academic age” of a researcher. It can obviously

be applied to any set of papers and it is an extremely simple and comprehensible composite

indicator which can be used to any level of aggregation but favorably to the assessment of re-

search performance of individual scientists. �is metric is a robust cumulative indicator. �is

index can be a good benchmark for evaluating researchers who have had a signi�cant impact

on scienti�c participation, but their scienti�c work has not been given the opportunity using

conventional scientometric channels. �e data needed for computation of this index is eas-

ily accessible through the ISI, Scopus, and Google Scholar databases without the need for any

information processing [10, 12–14].

However, the scienti�c performance can hardly be expressed simply by one indicator alone.

Hence, this indicator has some limitations. Some academic majors, and consequently some

journals, have di�erent ways of citing articles. Sometimes an article on agriculture has nearly

a hundred references, but an article on mathematics has far fewer references than that, which

is due to the di�erence between journals and scienti�c majors and h-index does not consider

this issue. H-index does not review the citation text. Many articles may be cited in one paper,

only using one sentence of them, nonetheless the focus of the research be only on a few speci�c

articles. A researcher can cite his or her previous research many times (self-citation) and this

can in�uence his or hers h-index and lead to a false result. Moreover, the h-index does not

account for the possibility that some collaborators may have contributed more than others on

a paper. �ere are also many situations where the h-index falls short. For instance, when a

researcher has only a few publications, but they are highly cited, the researcher’s h value is

limited by the small number of publications regardless of their high quality and in�uence (e. g.,

Albert Einstein, whose h-index is not high, but has heavily in�uenced the scienti�c world with
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those few publications). According to Jorge E. Hirsch the index is best used when comparing

researchers of similar scienti�c age and that highly collaborative researchers may have in�ated

values [10, 12–14].

1.1.2 Collaborations

Generally, there is no theoretical link between the h-index of an author and the collaborations

the author has formed. In other words, it is not necessary that the h-index of an author who

has collaborated with many other researchers be high. However, there could be a correla-

tion between h-index and co-authorship pa�erns [15]. In fact, co-authorship can augment the

number of papers which are published by a scientist [16–20]. Some studies have focused on

the relationship between productivity and the structural role of authors in the co-authorship

network, and have reported that authors who publish with many di�erent co-authors bridge

communication and tend to publish more papers [21, 22]. Since research productivity is cap-

tured by the h-index, co-authorship networks could potentially provide some insight into the

impact of authors. Due to technological development and improved remote communication,

the collaboration between scientists of di�erent countries and institutions has become easier.

So many new co-operations can be created, which in the past was exceedingly di�cult. Sci-

entists can collaborate remotely with colleagues from anywhere in the world. Collaboration

is de�ned as working jointly with others or together especially in an intellectual endeavor.

�e term collaboration in academic research is usually thought to mean an equal partnership

between two academic faculty members who are pursuing mutually interesting and bene�-

cial research. Many collaborations involve researchers of di�ering stature, funding status, and

types of organizations.

1.2 Problem Statement & solution

In the past, there were speci�c journals where a scientist could publish his or her research, so

it was easy for someone to access the results of a scientist’s work. Nowadays, there is a wide

variety of journals, conferences, and electronical journals. Furthermore, researchers have the

ability to publish their work not only in an ever-growing number of traditional venues, such

as conferences and journals, but also in electronic preprint repositories and in mega-journals

that supply rapid publication times [4]. Hence, it becomes challenging to gather the produced
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knowledge by scientists and extremely di�cult for someone to keep up with new research, as

they have to look at many di�erent venues. For this reason, the appropriate structure had to be

built that would gather all this new research. Scopus, Google Scholar, and the Web of Science

are bibliographic databases which compute and report the h-index of authors and try to collect

the published papers of an author from di�erent journals and conferences.

Despite the e�ort of these databases, they struggle with the collection of all this volume of

publications, as in many cases there is a lack of data with many papers of an author being

absent. Also, a very common problem is that the citations are not mentioned in some papers,

or the citations of a paper are not being timely updated. In addition, there is o�en a dispersion

of information, where a researcher’s publications are on di�erent databases and not concen-

trated on one bibliographic database. �erefore, the exact computation of a scientist’s h-index

becomes a challenging situation. �e accurate calculation of h-index is an urgent issue due to

the signi�cance of this indicator. �e h-index of a scientist is key in decision making concern-

ing recruitment, promotion, funding, and new collaborations between notable scientists. An

answer to the problem of the exact computation of scientist’s h-index can be given by machine

learning and its applications. More precisely, using the proper models of machine learning we

can accomplish a reliable prediction of the h-index, which will deviate as li�le as possible from

its actual value. Scope of this thesis statement is to create a model that predicts the h-index of

a scientist using a variety of machine learning algorithms.

For this purpose, we tried to combine di�erent data about a scientist’s collaborations and pub-

lications, in order to �nd a pa�ern and gather more knowledge which helped us predict the

h-index of researcher. Firstly, we extracted paragraph embeddings abstracts from all papers’

abstracts and we created the scienti�c collaboration network. �e collaboration network is an

undirected, scale-free social network where nodes are scientists and links are co-authorships,

as the la�er is one of the most well documented forms of scienti�c collaboration [23]. �e ma-

jority of authors are sparsely connected, while a minority of them are intensively connected

[24]. In our network every edge that corresponds to a co-authorship has a weight which shows

the number of times that two authors have cooperated for the publication of a scienti�c work.

So, we created a weighted undirect graph. Secondly, we took the top 10 papers of an author

according to their citation number and we concatenated their abstract embeddings, creating a

new feature set. �irdly, using the algorithm of Node2Vec and computing some metrics based

on the graph theory, like centrality measures, we extracted some extra features from the graph.
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We collected all these new generated features in one feature set which is used to train the ma-

chine learning algorithms that we implemented. In the stage of prediction, we tried many ma-

chine learning algorithms from classical machine learning models to some custom and recently

popular deep learning models. �e initial datasets were collected by the Microso� Academic

Graph.

1.3 Brief Analysis

In this section we analyse brie�y the data that we used

1.3.1 Introduction

For the purpose of this dissertation, 3 text �les and a comma-separated values (csv) �le were

used. �e initial data sets were obtained from the Microso� Academic Data Collection and

more speci�cally from the Microso� Academic Graph, an enormous project in which a huge

amount of data about the academic community has been collected. From this multitude of

data, we received some speci�c datasets that served the purpose of our work. However, most

of these datasets are consisted of several Gigabytes of �les, making our task quite challenging,

as we had to handle big data in an e�cient way and in a reasonable time, along with the data

mining and machine learning part.

1.3.2 MAG

Microso� has created a Heterogeneous Academic Graph (MAG) which contains research pa-

pers, authors of publications, conferences and journals where these publications were pre-

sented, the citations of these publications, the institutions in which the authors of these publi-

cations are based as well as the scienti�c �elds to which the authors of these publications be-

long, constituting essentially a relational model (Entity-Relationship model) created between

scientists, academic publications, academics and scienti�c institutes and scienti�c conferences.

�erefore, the Microso� Academic Graph is a large project, which has collected a huge amount

of data about the academic community, containing more than 250 million authors and 219 mil-

lion papers. �is graph is used to power experiences in Bing, Cortana, Word, and in Microso�
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Academic. �e Microso� Academic Graph (MAG), shows citation relationships between pub-

lications and authors. Using an additional user-friendly interface called ”Academic Knowledge

API,” the user can combine the indexing power of Bing with MAG to receive a histogram of

related publications, journal entries, presentations, and authors. For the creation of MAG, the

Microso� Research deployed AI-powered machine readers to process all documents discovered

by Bing crawler and extract scholarly entities and their relationships to form a knowledge base.

We decided to use MAG instead of other potential databases such as DBLP and AMiner for two

reasons. First, the h-index values of authors estimated from the data contained in MAG were

closer to those provided by services like Scopus and Google Scholar. Secondly, MAG is very

well-curated compared to other databases (e. g., less conference names and scienti�c �elds

were missing). It should be noted that MAG required some pre-processing before predictive

models could be applied, and due to its very large scale, this task turned out to be particularly

challenging [25, 26].
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Figure 1.1: ER model of MAG

1.3.3 Datasets & Analysis

�e three text �les, that were taken from Microso� Academic Graph, are the �les entitled as

”PaperAuthorA�liations”, ”PaperAbstractsInvertedIndex” and ”PaperReferences”, whereas the

csv �le, ”�eld hindex full” was created by our team. �e ”�eld hindex full” �le, with a size of

2.81 GB, was created to collect the h-index and the �eld of study for some of the authors that

exist in the ”PaperAuthorA�liations” �le. �e ”�eld hindex full” �le contains the author id,

the scienti�c �eld in which each author is specialized in, the h-index and the name of each

scientist. �e �le with title ”PaperAuthorA�liations” has a size of 40.9 GB and it actually con-

tains information about which scientist worked on which academic publication. �is speci�c



9

�le consists of the following features: the paper ids, the author ids, the a�liation ids, the se-

quence number of the authors, the original author of each di�erent paper id and the original

academic institution a�liation of the author. Speci�cally, a paper id is associated with one or

more author ids, where each di�erent author id can be associated with one or more a�liation

ids. �e sequence number of author feature simply states the order in which an author’s name

is wri�en on the paper. We used this �le to generate the collaboration network.

File Features Samples Size

PaperAuthorA�liations PaperId, AuthorId, A�liationId, AuthorSequenceNumber, OriginalAuthor, OriginalA�liation 609,737,802 40.9 GB

PaperReferences PaperId, PaperReferenceId 1,544,731,610 32.8 GB

PaperAbstractsInvertedIndex PaperId, IndexedAbstract 129,255,233 189 GB

�eld hindex full author, category, f hindex, conf, hindex, name, surname 49,231,927 2.81 GB

Table 1.1: Datasets’ speci�cations

We were interested in creating a graph where each author of a paper is a node and is connected

through an edge with all the other co-authors who have collaborated for the publication of each

paper. Each edge, which connects authors who have collaborated to write a paper, also has a

weight that shows the number of times that two authors have cooperated for the authorship

of any paper. For the creation of the collaboration network we took into account only the

authors that exist both on ”�eld hindex full” �le and on ”PaperAuthorA�liations” �le. Also,

we generated two di�erent graphs. �e �rst one consists of nodes and edges with weight at

least equal to 35 collaborations. �e second one consists of authors whose �eld of specialization

is engineering. We made experiments on both networks, since the �rst graph has only edges

with weight equal or greater to 35, a case not realistic at all. �us, we wanted a graph which

simulates be�er a real-life case.

�e ”PaperAbstractsInvertedIndex” �le with size of 189 GB, holds the abstract of each paper,

having as features the paper id and the inverted index of the abstract of each paper. Our goal

was to get the abstract from each paper and with the technique of Word2Vec and FastText to

extract the word embeddings of each word to later create the paragraph embeddings. Para-

graph embeddings were generated for each abstract, taking the average of word embeddings

of each abstract multiplied by a speci�c weight. �e 32.8 GB ”PaperReferences” �le contains

the source information used in a paper. More precisely, we have each paper id associated with

one or more di�erent paper ids used as sources to create this academic publication. We used

this �le to compute the citation number of each paper and �nd the top 10 cited papers of each

author in our collaboration network. A�er that, we concatenated the paragraph embeddings of
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the author’s top 10 cited papers, creating a new embedding. Additionally, from the collabora-

tion graph we extracted some metrics based on graph theory like degree centrality, PageRank,

Laplacian centrality and applying the Node2Vec algorithm we generated vector representa-

tions of nodes of graph. Using all these new generated features we were led to our �nal feature

set which we used to train the machine learning models. Firstly, we implemented classical

machine learning algorithms such as SVM, Decision Tree, using them as baselines. Secondly,

we trained multi-layer perceptron model and deep learning models like graph neural networks

and a custom model that we explain thoroughly in Section 5.4. Using all these di�erent ma-

chine learning models, we tried to predict as accurately as possible the h-index of a researcher.

�e aforementioned steps will be analyzed extensively in the following chapters.

Figure 1.2: Diagram of data management

Figure 1.3: Detailed diagram of data management

�e Figure 1.2 and the Figure 1.3 describe the data management and the procedures that are

applied on them to achieve our �nal purpose.

1.3.4 Resources

For the purpose of this thesis statement, we used two di�erent machines. �e �rst one is a

computer with RAM of 16 GB, a Solid-State Drive (SSD) of 2 TB, a Hard Drive Disk (HDD) of



11

2 TB, an Intel CPU of 4-cores and with operating system Windows 10. We do not mention the

GPU of this machine because we did not make use of it for computations that took place in this

computer. For short, we refer to this computer as ”PC 1”. �e second one is an Azure virtual

machine which is one of several types of on-demand, scalable computing resources that Azure

o�ers. �is machine has RAM of 54.9 GB, a Hard Drive Disk of 1 TB, an Intel Xeon CPU of

6-cores and a GPU Nvidia Tesla M60 with memory 8 GB. �e operating system of this machine

is Ubuntu 18.04.4 LTS and from now on we call this computer as ”Azure computer”.

Computer speci�cations
Machine

PC 1 Azure computer

OS Windows 10 Pro Ubuntu 18.04.4 LTS

CPU
Intel Core i5-4440 Intel Xeon E5-2690

3.10 GHz (4 cores, 4 threads) 2.60 GHz (6 cores, 6 threads)

GPU
Nvidia GTX 960 Nvidia Tesla M60

GDDR5 4GB GDDR5 8GB

RAM capacity 16 GB 54.9 GB

HDD 2 TB 1 TB

SSD 2 TB -

Table 1.2: Computers’ speci�cations



Chapter 2

Abstract Embeddings

�e role of the abstract in a paper is very important, because it summarizes the scope, the

research problem that is investigated, the basic method of the study and the results of the sci-

enti�c research which is described in the paper. �us, through the examination of a paper’s

abstract we can extract precious key information about the subject, the importance, and the

�eld of study of the paper. We can extract precious knowledge from the abstract about the

impact of the paper. In our project, the information about the abstract is included in the ”Pa-

perAbstractsInvertedIndex” text �le. �is �le has a di�erent format from the other data sets.

Each record (row) of the �le is constituted of the paper id and a json object. �e json object

has the information about the abstract of the paper, holding two keys. �e value of �rst the

key (IndexLength) is the length of the abstract (i. e., , the number of words in abstract) and the

second key (InvertedIndex) has as value a second json object which has as key every distinct

word in abstract and each key (distinct word of abstract) has as value the position of word in

abstract (index). Using distinct words of abstract and their position in paragraph, we managed

to reconstruct the paragraph of the abstract.

Our next step was to remove stop words and punctuation from the reconstructed abstract.

For this purpose, we used the default English stop words list of Gensim library and a list of

punctuations to remove any word of the abstract that is a stop word or any character that is

punctuation. �e default English stop words list of Gensim has 337 words in their stop words

collection. Removing punctuation can lead to break compound words into its synthetics. Ide-

ally, we did not want to break compound words, but due to some errors on the initial dataset

of Microso� Academic Graph we had to clean and correct some fake compound words like

12
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”disaster-hurricane” or ”Katrina-and”, which are located to the ”PaperAbstractsInvertedIndex”

�le. We saved the results from the pre-process of ”PaperAbstractsInvertedIndex” �le in a new

text �le with the title ”PaperAbstracts” where each record is composed by paper id, a colon

and the words of abstract separated by a question mark. �e new dataset has size 63.9 GB

and 129,255,233 records, like initial �le. A�er the process of the initial dataset, we used the

Word2Vec and the FastText algorithm to generate the word embeddings of the papers’ ab-

stracts.

2.1 Word Embeddings

Word embedding is any feature learning technique in natural language processing (NLP), where

words or phrases from the vocabulary are mapped to vectors of real numbers in a prede�ned

vector space. Conceptually, it involves a mathematical embedding from a space with many

dimensions per word to a continuous vector space with a much lower dimension. Word em-

bedding is a way to transform any word to a mathematical representation, transitioning from

the linguistic area into the space of mathematics. �e representation is learned based on the

usage of words. �is allows words that are used in similar ways to result in having similar

representations, naturally capturing their meaning [27]. Some methods to generate this map-

ping include neural networks [28], dimensionality reduction on the word co-occurrence matrix

[29–31], probabilistic models, explainable knowledge base method, and explicit representation

in terms of the context, in which words appear [32]. Word embedding methods learn a real-

valued vector representation for a prede�ned �xed sized vocabulary from a corpus of text.

Word embeddings try to capture the semantic, contextual and syntactic meaning of each word

in the corpus vocabulary based on the application of these words in sentences. Words that

have similar semantic and contextual meaning also have similar vector representations while

at the same time each word in the vocabulary will have a unique set of vector representation

[27, 33].

�e simplest way to map words numerically is to one-hot-encode unique word in a corpus of

text. However, this method has many disadvantages. In a real-world scenario, we will have

millions of sentences and millions of words in vocabulary. Hence, the dimensions of one-hot-

encoded vectors for each word will explode in millions. �is will lead to scalability issues when

it is fed to our models, and in turn will lead to ine�ciency in time and computational resources.

Also, given that we will have zeros’ everywhere except for a single 1 at the correct position,
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the models have a very hard time learning this data, therefore our model may not generalize

well over the test data. Finally, it is impossible to capture the context, since one-hot-encoding

blindly creates vectors without taking into account the shared dependencies and context in

which each word of vocabulary lies, we lose the contextual and semantic information [27, 32–

35].

�ere are many other simpler methods than word embeddings, such as term-frequency ma-

trix, TF-IDF matrix and co-occurrence matrix. But even these methods face one or more issues

in terms of scalability, sparsity, and contextual dependency. �erefore, we prefer word em-

beddings since it resolves all the issues mentioned above. �e embeddings map each word to

a N -dimensional space where N ranges from 50–1000 in contrast to a million-dimensional

space. Consequently, we resolve scalability issues. Since each vector in the embeddings is

densely populated in contrast to a vector containing zeros’ everywhere, we have also resolved

the sparsity issues. �us, the model can now learn be�er and generalize well. Finally, these

vectors are learned in a way that captures the shared context and dependencies among the

words [27, 32–35].

2.1.1 Word2Vec

Word2Vec is an algorithm developed by Tomas Mikolov, et al. at Google in 2013. �e algorithm

was built on the idea of the distributional hypothesis. �e distributional hypothesis suggests

that words occurring in similar linguistic contexts will also have similar semantic meaning.

Word2Vec uses this concept to map words having similar semantic meaning geometrically

close to each other in a N -Dimensional vector space. �e vectors are chosen carefully such

that a simple mathematical function (the cosine similarity between vectors) indicates the level

of semantic similarity between the words represented by those vectors. So, it is a technique

for natural language processing. �e Word2Vec algorithm uses a neural network model to

learn word associations from a large corpus of text. It uses the approach of training a group

of shallow, 2-layer neural networks to reconstruct the linguistic context of words. It takes in

a large corpus of text as an input and produces a vector space with dimensions in the order

of hundreds. Each unique word in the corpus vocabulary is assigned a unique corresponding

vector in the space. Once trained, such a model can detect synonymous words or suggest

additional words for a partial sentence [1, 28, 36]. As the name implies, Word2Vec represents

each distinct word with a particular list of numbers called a vector, as shown in Figure 2.1.
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Figure 2.1: Word2Vec functionality

Continuous Bag of Words Model (CBOW) and Skip-gram are two architectures to learn the

underlying word representations for each word by using neural networks [1, 28, 36].

Figure 2.2: CBOW architecture vs Skip-gram architecture [1]

In the CBOW model, the distributed representations of context (or surrounding words) are

combined to predict the word in the middle. While in the Skip-gram model, the distributed

representation of the input word is used to predict the context. Given a set of sentences (cor-

pus) the model loops on the words of each sentence and either tries to use the current word

w in order to predict its neighbors (i. e., its context), this approach is called ”Skip-Gram”, or

it uses each of these contexts to predict the current word w, in that case the method is called

”Continuous Bag Of Words” (CBOW). To limit the number of words in each context, a param-

eter called ”window size” is used. �e major di�erence between these two methods is that

CBOW is using context to predict a target word while Skip-gram is using a word to predict

a target context. Generally, the Skip-gram method can have a be�er performance compared

with CBOW method, for it can capture two semantics for a single word. For instance, it will

have two vector representations for Apple, one for the company and another for the fruit. �e

Skip-gram model is the opposite of the CBOW model [1, 28, 36].
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2.1.1.1 Skip-gram Model

Skip-Gram is a neural network comprising of one hidden layer and an output layer and can be

trained on very large unlabeled datasets.

Figure 2.3: Skip-gram training

�e goal is actually just to learn the weights of the hidden layer that are actually the word

vectors that we are trying to learn. �us, the size of the hidden layer determines the size of the

word vectors we wish to have at the end. For Skip-gram, the input is the target word, while

the outputs are the words surrounding the target words. Given a word, we try to predict its

neighboring words. We de�ne a neighboring word by the window size — a hyper-parameter. A

typical window size might be 5, meaning 5 words behind and 5 words ahead (10 in total). Note

that within the sample window, proximity of the words to the source word plays no role. �e

output probabilities are going to relate to how likely it is �nding each vocabulary word nearby

our input word. As we are passing the context window through the text data, we �nd all pairs

of target and context words to form a dataset in the format of target word and context word.

�e training set is built by generating word-context pairs, i. e., for each word wi and a training

context c, we create pairs of the form (wi, wi−c), . . . , (wi, wi−1), (wi, wi+1), . . . , (wi, wi+c).

We train the neural network by feeding it with word pairs found in our training documents.

�e network is going to learn the statistics from the number of times each pairing shows up

[1, 28, 36, 37].

First of all, we build a vocabulary of words from our training documents. �e Skip-gram model

takes in a corpus of text and creates a hot-vector for each word. A hot vector is a vector
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representation of a word where the vector is the size of the vocabulary (total unique words).

All dimensions are set to zeros except the dimension representing the word that is used as

an input at that point in time. We are going to represent an input word as a one-hot vector.

�e output of the network is a single vector containing, for every word in our vocabulary, the

probability that a randomly selected nearby word is that vocabulary word. Each dimension of

the input passes through each node of the hidden layer. �e dimension is multiplied by the

weight leading it to the hidden layer. Since our input vectors are one-hot, multiplying an input

vector by the weight matrix W1 amounts to simply selecting a row from W1 (i. e., for a word

only the weights associated with the input node with value 1 will be activated in the hidden

nodes). �e dimensions of the input vector will be 1xV — where V is the number of words in

the vocabulary. �e hidden layer is going to be represented by a weight matrix with V rows

(one for every word in our vocabulary) and d columns (one for every hidden neuron). If we look

at the rows of this weight matrix, these are what will be our word vectors. From the hidden

layer to the output layer, the second weight matrixW2 can be used to compute a score for each

word in the vocabulary, and so�max function can be used to obtain the posterior distribution

of words. So, the output layer is a so�max regression classi�er. �e output from the hidden

layer will be of the dimension 1xd and the dimensions of the output layer will be 1xV , where

each value in the vector will be the probability score of the target word at that position. So,

the goal of all of this is just to learn this hidden layer weight matrix W1 [1, 28, 36, 37].

Figure 2.4: Hidden layer weight matrix is the word embeddings that we want to learn
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Figure 2.5: Skip-gram architecture

Speci�cally, weights start o� as random values. �e network is then trained to adjust the

weights to represent the input words. �is is where the output layer becomes important. Now

that we are in the hidden layer with a vector representation of the word, we need a way to

determine how well we have predicted that a word will �t in a particular context. �e context

of the word is a set of words within a window around it. We activate the output layer by

multiplying the vector that we passed through the hidden layer (which was the input hot vector

multiplied by weights entering hidden node) with a vector representation of the context word

(which is the hot vector for the context word multiplied by weights entering the output node)

[1, 28, 36, 37].
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Figure 2.6: Output layer: Probability of a random word to be in the context of input word

Figure 2.7: �e state of the output layer for the �rst context word

�e above multiplication is done for each word to context word pair. We then calculate the

probability of a word to belong to a set of context words using the values resulting from the

hidden and output layers. For the calculation of the probability we use the so�max function.

Speci�cally, in our project, in order to learn an embedding for each word w ∈ V (vocabulary),

our model is trained to minimize the following objective function:

L =
∑
p∈Pv

∑
wi∈p

∑
wj∈{wi−c,...,wi+c}

wj 6=wi

log
(
p(wj |wi)

)
(2.1)

p(wj |wi) =
exp(v>wi

v′wj
)∑

w∈W exp(v>wi
v′w)

(2.2)

where c is the training context, v>wi
is the row of matrix H that corresponds to word wi, and

v′wj
is the column of matrix O that corresponds to wj . Matrix H ∈ R|W |×d is associated

with the hidden layer, while matrix O ∈ Rd×|W | is associated with the output layer. Larger c

results in more training examples and thus can lead to a higher accuracy, at the expense of the

training time. �is Equation 2.1 is impractical because the cost of computing∇ log p (wj | wi)

is proportional toW , which is o�en large. �e objective of the Skip-gram model is to minimize
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the above log-likelihood function 2.1. Both of these matrices are randomly initialized and are

trained using the loss function 2.1 de�ned above. �e embeddings of the words are contained

in the rows of matrix H. We apply stochastic gradient descent to change the values of the

weights in order to get a more desirable value for the probability calculated. In gradient descent

we need to calculate the gradient of the loss function with respect to the weight that we are

changing. �e gradient is then used to choose the direction in which to make a step to move

towards the local optimum. �e weight will be changed by making a step in the direction of the

optimal point. �e new value is calculated by subtracting from the current weight value the

derived function at the point of the weight scaled by the learning rate. �e next step is using

backpropagation to adjust the weights between multiple layers. �e error that is computed at

the end of the output layer is passed back from the output layer to the hidden layer by applying

the Chain Rule. Gradient descent is used to update the weights between these two layers. �e

error is then adjusted at each layer and sent back further [1, 28, 36, 37].

Figure 2.8: Backpropagation: representation of update of weights and �ow of error from
output to input layer

�e backpropagation for training samples corresponding to a source word is done in one back

pass. So, for a target word, we will complete the forward pass for all 2c context words. We will

then calculate the error vectors [1xV dimension] corresponding to each context word. We will

now have 2c 1xV error vectors and will perform an element-wise sum to get a 1xV vector. �e

weights of the hidden layer will be updated based on this cumulative 1xV error vector. �e

training complexity of this architecture is proportional toQ = 2c×(d+d× log(V )). �e main

intuition behind the representations learnt by this model is that if two di�erent words have
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very similar ”contexts”, then the model will output very similar results for these two words.

We expect synonym or related words to have very similar contexts [1, 28, 36, 37].

2.1.1.2 CBOW

Continuous Bag of Words (CBOW) is very similar to Skip-gram, except that it swaps the input

and output. �e idea is that given a context, we want to know which word is most likely to

appear in it. We still take a pair of words and teach the model that they co-occur but instead

of adding the errors we add the input words for the same target word. �e dimension of our

hidden layer and output layer will remain the same. Only the dimension of our input layer and

the calculation of hidden layer activations will change. If we have c context words for a single

target word, we will have 2c 1xV input vectors. Each will be multiplied with the V xd hidden

layer returning 1xd vectors. All 2c 1xd vectors will be averaged element-wise to obtain the

�nal activation which then will be fed into the so�max layer [1, 28, 36].

Figure 2.9: CBOW architecture

�e input will be the context of words, each of them being one-hot-encoded and fed to the

network and the output is the probability distributions of each word in the vocabulary. �e

biggest di�erence between Skip-gram and CBOW is the way the word vectors are generated.
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For CBOW, all the examples with the target word as target are fed into the networks and taking

the average of the extracted hidden layer. For example, assume we only have two sentences,

”He is a nice guy” and ”She is a wise queen”. To compute the word representation for the

word ”a”, we need to feed in these two examples, ”He is nice guy”, and ”She is wise queen”

into the Neural Network and take the average of the value in the hidden layer. Skip-gram

only feed in the one and only one target word one-hot vector as input. Training complexity

of this model is Q = 2c × d + d × log(V ). We do not analyze further the CBOW because

its training is very similar to Skip-gram, which was analyzed in detail in the previous section

(Section 2.1.1.1). Moreover, we focus on Skip-gram because it is the model that we used in our

project for the creation of word embeddings. It is claimed that Skip-gram tends to perform

be�er in rare words. While, CBOW is faster and has be�er representation for more frequent

words. Nevertheless, the performance of Skip-gram and CBOW are generally similar [1, 28, 36].

2.1.1.3 Negative Sampling

�rough our research, we used the Skip-gram method because it produces more accurate re-

sults on large datasets and it performs be�er in capturing the semantic of a word, especially

of rare words. Due to the form of our dataset, abstracts have many rare scienti�c words of

which we want to capture the semantic, hence Skip-gram is the appropriate model for our

goal. Due to the large vocabulary size the above formulation of Equation 2.2 is impractical and

hence, a negative sampling scheme is usually employed. Firstly, for each training sample, only

the weights corresponding to the target word might get a signi�cant update. While training

a neural network model, in each backpropagation pass we try to update all the weights in the

hidden layer. �e weight corresponding to non-target words would receive a marginal or no

change at all, so in each pass we only make very sparse updates. Secondly, for every training

sample, the calculation of the �nal probabilities using the so�max function 2.2 is quite an ex-

pensive operation as it involves a summation of scores over all the words in our vocabulary

for normalizing. So for each training sample, we are performing an expensive operation to

calculate the probability for words whose weight might not even be updated or be updated so

marginally that it is not worth the extra overhead [28, 36, 38, 39].

To overcome these two problems, instead of brute forcing our way to create our training sam-

ples, we try to reduce the number of weights updated for each training sample. Negative sam-

pling is a technique to improve the learning without compromising the quality of embeddings.
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Negative sampling allows us to only modify a small percentage of the weights, rather than all

of them for each training sample. We do this by slightly modifying our problem. Instead of

trying to predict the probability of being a nearby word for all the words in the vocabulary,

we try to predict the probability of our training sample words to be neighbors or not. �us,

we do not try to predict the probability for wi to be a nearby word i. e., P (wi | wj), we try to

predict whether (wi, wj) are nearby words or not by calculating P (1 |< wi, wj >). So instead

of having one giant so�max — classifying among thousands of classes, we now have turned it

into thousands binary classi�cation problems. We further simplify the problem by randomly

selecting a small number of ”negative” words k (a hyper-parameter, let’s say 5) to update the

weights for. (In this context, a ”negative” word is one for which we want the network to out-

put a 0). For our training sample (wi, wj), we will take �ve words, and use them as negative

samples. For this particular iteration we will only calculate the probabilities for wi and the

�ve words that we selected as negative samples. Hence, the loss will only be propagated back

for them and therefore only the weights corresponding to them will be updated. We de�ne

negative sampling by the objective function:

J = log σ
(
v′wi

>vwj

)
+

k∑
i=1

Ewl∼Pn(w)

[
log σ

(
−v′wl

>vwj

)]
(2.3)

which is used to replace every logP (wi | wj) term in the Skip-gram objective. �us, the task is

to distinguish the target word wi from draws from the noise distribution Pn(w) using logistic

regression, where there are k negative samples for each data sample. Our experiments indicate

that values of k in the range 5−20 are useful for small training datasets, while for large datasets

the k can be as small as 2− 5. Here, σ = 1
1+exp(x) is the sigmoid function. �e �rst term of the

above objective function 2.3 tries to maximize the probability of occurrence for actual words

that lie in the context window, i. e., they co-occur. While the second term tries to iterate over

some random words L, that do not lie in the window and minimize their probability of co-

occurrence. We sample the random words based on their frequency of occurrence. P (w) =

U(w) raised to the 3/4 power, where U(w) is an uni-gram distribution. �e 3/4 power makes

less frequent words be sampled more o�en, without its probability of sampling frequent words

to be much higher than other words. So, we try to maximize the probability P (1 |< wi, wj >)

and minimize the probability of our negative samples P (0 |< wj , wl1 >), P (0 |< wj , wl2 >

), P (0 |< wj , wl3 >), P (0 |< wj , wl4 >), P (0 |< wj , wl5 >) [28, 36, 38, 39].
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�e �nal form of objective function is:

L =
∑
p∈Pv

∑
wi∈p

 ∑
wj∈{wi−c,...,wi+c}

wj 6=wi

log σ
(
v′wi

>
vwj

)
+

k∑
i=1

Ewl∼Pn(w)

[
log σ

(
−v′wl

>
vwj

)]
(2.4)

2.1.1.4 Our Implementation

In our project we trained the following Skip-gram model:

For our model we set the dimension of the word vectors equal to 300, initial learning rate

equal to 0.1, the size of context window equal to 10 (maximum distance between the current

and predicted word within a sentence i. e., how many words before and a�er a given word

would be included as context words of the given word). We used negative sampling with 5

noise words, and we de�ned the model to ignore all words with total frequency lower than 5.

We trained the model for 10 epochs. Generally, we used the values of hyperparameters that are

recommended by the authors of the paper of Word2Vec [1, 28]. �e vocabulary of our imple-

mentation of Word2Vec has size equal to 5,274,125 words and the training of Word2Vec lasted

331,255 seconds. For the training of Word2Vec we used the Azure computer (Section 1.3.4).

2.1.2 FastText

Due to the enormous amount of data being generated by Facebook users every day, Facebook

had a very challenging task to deal with such a huge amount of data. �is data included an

enormous amount of text in the form of status updates, comments, etc. In order to serve its

users in the best possible ways, Facebook had to think of a di�erent way to compute word rep-

resentation of this generated data by billions of users. In order to deal with this large amount

of data generated each day Facebook came out with its own open-source library, FastText, for

word representation and text classi�cation. FastText is a library for learning of word embed-

dings and text classi�cation created by Facebook’s AI Research (FAIR) lab. FastText allows us

to train supervised and unsupervised representations of words and sentences. It uses a neural
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network for word embedding. FastText supports training continuous bag of words (CBOW)

or Skip-gram models using negative sampling, so�max or hierarchical so�max loss functions.

FastText is an extension of Word2Vec [40, 41].

Instead of feeding individual words into the Neural Network, FastText breaks words into sev-

eral n-grams (sub-words). For instance, the tri-grams for the word apple is app, ppl, and ple

(ignoring the starting and ending of boundaries of words). �e word embedding vector for ap-

ple will be the sum of all these n-grams. A�er training the Neural Network, we will have word

embeddings for all the n-grams given the training dataset. Rare words can now be properly

represented, since it is highly likely that some of their n-grams also appear in other words.

As its name suggests, its fast and e�cient method to perform the same task and because of

the nature of its training method, it ends up learning morphological details as well. FastText

is unique because it can derive word vectors for unknown words or out of vocabulary words

— this is valid because by taking morphological characteristics of words into account, it can

create the word vector for an unknown word. Since morphology refers to the structure or syn-

tax of the words, FastText tends to perform be�er for such a task, Word2Vec performs be�er

for a semantic task. FastText works well with rare words. So even if a word was not seen

during training, it can be broken down into n-grams to get its embeddings. FastText takes

into account the internal structure of words while learning word representation. FastText is

able to achieve really good performance for word representations and sentence classi�cation,

especially in the case of rare words by making use of character level information. Each word

is represented as a bag of character n-grams in addition to the word itself, so for example,

for the word ma�er, with n = 3, the FastText representations for the character n-grams is

< ma,mat, att, tte, ter, er >. Symbols < and > are added as boundary symbols to distin-

guish the ngram of a word from a word itself, so for example, if the word mat is part of the

vocabulary, it is represented as < mat >. �is helps preserve the meaning of shorter words

that may show up as n-grams of other words. Inherently, this allows us to capture meaning

for su�xes or pre�xes. �e model is considered to be a bag of words model because aside of

the sliding window of n-gram selection, there is no internal structure of a word that is taken

into account for featurization, i. e., as long as the characters fall under the window, the order

of the character n-grams does not ma�er. During the model update, FastText learns weights

for each of the n-grams as well as the entire word token [40, 41].

Word2Vec and GloVe both fail to provide any vector representation for words that are not

in the model dictionary. �is is a huge advantage of this method. �e main di�erence of
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FastText with Word2Vec is the use of n-grams. We will brie�y describe the training of Skip-

gram model of FastText because we represented extensively the Skip-gram and cbow model

in the paragraph of Word2Vec. Generally, the models of FastText share the same a�ributes

as the models of FastText i. e., we have the same loss function, the same objective function of

negative sampling. �us, in the case of training of Skip-gram in FastText, the target vector for

the loss function is computed via a normalized sum of all the input vectors. �e input vectors

are the vector representation for the original word, and all the n-grams of that word. �e

loss is computed and the weights for the forward pass are updated, propagating their update

all the way back to the vectors of the input layer in the backpropagation pass. �is tuning

of the input vector weights that happens during the backpropagation pass allows us to learn

representations that maximize co-occurrence similarity. �e learning rate a�ects how much

each particular instance a�ects the weights. In case of absence of n-gram embeddings, FastText

reduces to the original Word2Vec model [40, 41].

Figure 2.10: Architecture of Skip-gram model of FastText

Its main focus is on achieving scalable solutions for the tasks of text classi�cation and repre-

sentation while processing large datasets quickly and accurately [40, 41].
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For the purpose of our thesis statement we used two di�erent libraries for the creation of word

embeddings. We used the implementation of FastText that we can �nd in the library of Gensim

and also, we used the default library of FastText algorithm. In order to distinguish the two

implementations, we refer to them as ”gensim FastText” and ”default FastText” respectively.

2.1.2.1 Our Implementation

�rough our research, we trained two di�erent implementations of FastText. In the �rst one

we used the Gensim library, while in the second one we used the original library of FastText.

In both cases we used the Skip-gram model. In the �rst case of Gensim FastText, we set the

dimension of the word vectors equal to 300, initial learning rate equal to 0.05, the size of context

window equal to 10 (maximum distance between the current and predicted word within a

sentence i. e., how many words before and a�er a given word would be included as context

words of the given word). We used negative sampling with 5 noise words and we set the

model to ignore all words with total frequency lower than 10. Also, we set the minimum and

maximum length of char n-grams equal to 3 and 6, respectively. We trained the model for 10

epochs. �e vocabulary of our implementation of Gensim FastText has size equal to 3,172,167

words and its training lasted 479,078.12 seconds.

In the second case of original FastText, we set the dimension of the word vectors equal to 300,

initial learning rate equal to 0.05, the size of context window equal to 10 (maximum distance

between the current and predicted word within a sentence i. e., how many words before and

a�er a given word would be included as context words of the given word). We used negative

sampling with 5 noise words and we set the model to ignore all words with total frequency

lower than 10. Also, we set the minimum and maximum length of char n-grams equal to 3 and

6, respectively. We trained the model for 10 epochs. �e vocabulary of our implementation of

original FastText has size equal to 3,171,455 words and its training lasted approximately 550,000

seconds. We set the same parameters for both implementations to compare their results in

Chapter 6. We de�ned the parameters of Gensim FastText based on the default parameters

of the original library of FastText. For this reason, we changed the learning rate of Gensim

FastText to the value 0.05. In the following chapters, we refer to the original FastText as ”default
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FastText”. For the training of both original library’s FastText and Gensim FastText we used the

Azure computer (Section 1.3.4).

2.1.2.2 Word2Vec versus FastText

Word2Vec treats each word in a corpus like an atomic entity and generates a vector for each

word. However, Word2Vec has one �aw. If we give it a word which is not in the vocabulary

that was used to train the model, it can not give us similar words (Out-of-Vocabulary problem).

�is is where FastText comes in. FastText is a word embedding model which is essentially

an extension of the Word2Vec model. FastText is built on not just using the words in the

vocabulary but also substrings of these words, treating each word as composed of character

n-grams. N-gram feature is the most signi�cant improvement in FastText, it is designed to

solve OOV (Out − of − V ocabulary) issue. So, the vector for a word is made of the sum of

its character n-grams. As a result, if we feed FastText a word that it has not been trained on, it

will look at substrings for that word and see if that appears in the corpus [1, 28, 40, 41]..

At each training step in FastText, the mean of the target word vector and its component n-

gram vectors are used for training. �e adjustment that is calculated from the error is then

used uniformly to update each of the vectors that were combined to form the target. �is adds

a lot of additional computation to the training step, making FastText training slower than that

of Word2Vec. At each point, a word needs to sum and average its n-gram component parts.

�e trade-o� is a set of word vectors that contain embedded sub-word information. �ese

vectors have been shown to be more accurate than Word2Vec vectors by a number of di�erent

measures. Also, FastText generates be�er word embeddings for rare words (even if words

are rare their character n-grams are still shared with other words — hence the embeddings

can still be good). �is is simply because, in Word2Vec a rare word (e. g., 10 occurrences) has

fewer neighbors to be tugged by, in comparison to a word that occurs 100 times — the la�er

has more neighbor context words and is tugged more o�en resulting in be�er word vectors.

Finally, FastText may require more storage than Word2Vec, considering vector dimension and

vocabulary size to be same [1, 28, 40, 41]. In our project we observed the majority of the

aforementioned di�erences between FastText and Word2Vec. �e size of the vocabulary of
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FastText is larger than the one of Word2Vec and the training time of FastText exceeded the

training time of Word2Vec.

2.2 Abstract Embeddings

Our initial purpose was to represent the abstract of each paper as a feature vector, so we wanted

to construct paragraph embeddings, as abstracts are actually a paragraph of a paper. In the

present bibliography there are many implementations and frameworks to create sentence, doc-

ument or paragraph embeddings. Due to the limitation of the resources and the size of corpus,

we decided to extract the feature vectors of each word in abstract and then to process this in-

formation appropriately in order to develop the abstract embeddings. Hence, for the creation

of abstract embeddings we implemented two di�erent approaches that share some similari-

ties. �e results from these methods represent the abstract of each paper and were used in the

construction of top 10 cited papers features that is described in Section 4.1.

2.2.1 Average Word Embeddings

Since the abstract of a paper contains multiple words, we needed to �nd a way to construct

sentence embeddings, speci�cally we wanted a vector representation, like word embeddings

for each sentence (i. e., abstract), instead of just words. �ere are many methods to create

sentence embeddings by using word embeddings. Also, except for generating sentence em-

beddings using equivalent word vectors, there is the possibility of creating them through the

training of proper algorithms like Doc2Vec or SentenceBERT. In our project we used two dif-

ferent techniques to construct sentence embeddings using word embeddings that we extracted

from Word2Vec and FastText algorithms. �e �rst method is to aggregate the embeddings of

the words to derive an embedding for the entire abstract. To this end, we simply averaged the

representations of the words.
1

|p|
∑
w∈p

vw (2.5)

where p is a paper, w is the word that belongs to this paper, vw is the word embedding for

this word and |p| is the number of words that exist in this paper. �is process is so simple and

the most common method that we could follow. We call the results of this method as ”average

abstract embeddings”.
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2.2.1.1 Modi�ed SIF Embeddings

�e second technique is an alternation of the previous process, as we multiplied each word’s

of a paper feature vector with a weight and we averaged again the new weighted word em-

beddings. �is method is based on SIF embeddings with some modi�cations. SIF embeddings

(Smooth Inverse Frequency) computes sentence embeddings as a weighted average of the word

vectors in the sentence and then removing the projections of the average vectors on their �rst

singular vector (”common component removal”), we take the �nal result (i. e., sentence embed-

dings). Here the weight of a wordw is a
a+p(w) with a being a parameter and p(w) the estimated

word frequency; we call this ”smooth inverse frequency” (SIF). �is method achieves signi�-

cantly be�er performance than the unweighted average on a variety of textual similarity tasks

and on most of these tasks even beats some sophisticated supervised methods. Common com-

ponent in the sentence representations computed by averaging word vectors. �e most similar

words to that component are found to be syntax-related: ”just” ”up” ”but” ”while”. Common

component vector serves as a correction term for the most frequent discourse that is o�en

related to syntax. Since common component vector is common to all the representations ob-

tained as a weighted average of word vectors, the authors of paper[2] propose removing the

�rst component of these representations using SV D. �e method is approximately a weighted

average of the vectors of the words in the sentence. Note that for more frequent words w, the

weight a
p(w)+1 is smaller, so this naturally leads to a down weighting of the frequent words [2].

Figure 2.11: Algorithm to compute the SIF embeddings. Source: [2]

In our case the di�erence is that we omi�ed the last step of the algorithm of SIF embeddings,

since we did not remove the projections of the average vectors on their �rst singular vector,

updating sentence embeddings. �us, we generated the sentence vectors vs by multiplying

each component vector vw by the inverse of its probability of occurrence. We then summed
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these normalized smoothed word vectors and divided by the number of words [2].

vs =
1

|p|
∑
w∈p

α

α+ pw
vw (2.6)

where p is a speci�c paper of the collection, w is the word that belongs to this paper, vw is the

word embedding for this word and |p| is the number of words that exist in this paper. Here, α

is a smoothing constant and pw is word’s probability of occurrence in corpus (i. e., word fre-

quency). �e parameter α takes the value 0.001 which is the default value as suggested in the

paper of SIF embeddings. Even though some calculations and steps of the method are omi�ed,

our modi�cation is based on SIF embeddings, thus for simplicity we refer to it with its orig-

inal name. So, we call the results of this method as ”SIF average abstract embeddings” or as

”SIF embeddings” brie�y. In our experiments that are described in Chapter 6, we mainly used

the SIF average abstract embeddings, but also we made an experiment in which we compared

the results of using average abstract embeddings to that of using SIF average abstract embed-

dings. According to paper [2], using smooth inverse frequency weighting alone improves over

unweighted average by about 5%, while using common component removal alone improves

by 10%, and using both improves by 13%. Hence, SIF average abstract embeddings may have

slightly be�er performance than average abstract embeddings in our experiments later[2].

We must mention that SIF average abstract embeddings, that were generated using Gensim’s

FastText’s word embeddings, are referred as ”SIF gensim’s FastText’s embeddings” or ”SIF gen-

sim FastText”, while SIF average abstract embeddings that were created using original library’s

FastText’s word vectors, are called as ”SIF default FastText embeddings” or ”SIF default Fast-

Text”. Finally, SIF average abstract embeddings that were constructed using feature vectors of

gensim Word2Vec, are called as ”SIF gensim Word2Vec embeddings” or ”SIF gensim Word2Vec”.

For the creation of both of the average abstract embeddings and of SIF average abstract em-

beddings we used the Azure computer (Section 1.3.4).



Chapter 3

Construction of Collaboration

Network

3.1 Pre-process of the ”PaperAuthorA�liations” File

�e ”PaperAuthorA�liations” �le contains information about scientists who worked on a spe-

ci�c paper. �is �le has six di�erent columns: paper id, the author id, a�liation id, the se-

quence number of the author (AuthorSequenceNumber), the original author of each paper

(OriginalAuthor) and the a�liation of the original author (OriginalA�liation). �e original

author is considered to be the scientist who contributed the most to the paper or the super-

visor researcher of an academic publication. Speci�cally, a paper id is associated with one or

more author ids, when each di�erent author id can be associated with one or more a�liation

ids. �e sequence number of the author simply states the order in which an author’s name is

wri�en on the paper. It is possible to have multiple rows with the same paper id, author id

and a�liation id, when an author is associated with multiple a�liations. �us, we may have

duplicate rows in our dataset. For the pre-process of this �le we used PC 1.

Initially, we tried to read the records of this �le using the Pandas library, but due to the size of

the dataset and the limitations on RAM it was not feasible. Taking that into account, we de-

cided to use the Dask library, which is an extension of Pandas for processing big data. Again,

we faced di�culty in reading the �le due to restrictions on resources of the machine. Hence, we

came up with an e�cient solution to these problems. We concluded in loading the dataset in a

32
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database, as using a database allows us to read enormous amount of data and to execute com-

plex queries, without being concerned about the limitations of the resources of the machine.

�is is due to the fact that databases include data, which are stored on disk and are loaded on

memory whenever they need to be pre-processed, consuming less memory space, but sacri�c-

ing time due to all these writings and readings from memory to disk and vice versa (i. e., we

have more I/Os). �erefore, we read the records of the ”PaperAuthorA�liations” �le per chunks

of 1,000,000 records, importing each chunk’s records into a local database to make it easier to

pre-process the data without any issues that occur from a limited RAM. For the creation of the

database we used the SQLite database management system, as it is not a client–server database

engine and stores the entire database (de�nitions, tables, indices, and the data itself) as a sin-

gle cross-platform �le on a host machine. Instead of using HDD, we saved the �le of SQLite

database on a SSD to improve and accelerate the time of writings and readings from memory

to disk and vice versa. �e scheme of database as well as its tables were created using Python

and the SQLAlchemy library. Next, we created a new table at the database with the name ”dis-

tinct records”. In this table we inserted the distinct records for columns PaperId and AuthorId,

so that we can keep only the necessary features and delete duplicate records with the same

PaperId and AuthorId, as duplicates can appear when an author is associated with multiple

a�liations.

Subsequently, we executed a complex query on the database. Initially, we joined the records of

the ”distinct records” table to itself (self join i. e., join a table to itself as if the table were two

tables) based on two conditions. We wanted to join only records with same PaperId (condition

1) and with di�erent AuthorId (condition 2), so that we do not get records for a particular

PaperId, which have equal AuthorId values. �e new generated records, that were created

a�er self-join, demonstrate the collaboration between two authors for a speci�c paper. �us,

we have a new table with columns PaperId 1, PaperId 2, AuthorId 1 and AuthorId 2, where

PaperId 1 and PaperId 2 values of a record are equals, while AuthorId 1 and AuthorId 2 values

of a record are di�erent. From these records we counted the times of collaboration of two

authors that resulted in the publication of a paper. From the �nal outcome a new table was

created with features AuthorId 2, AuthorId 1 and weight where AuthorId 1 and AuthorId 2

values of a row were di�erent, where weight quanti�ed the frequency with which two speci�c

authors have cooperated for a research. Essentially, these results represent the co-authorships

and are the edges that we used to construct our collaboration network and the feature of weight

constitutes the weight of edges of the graph. Except for the quantifying of collaborations the
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meaning of weight is expanded more. Hence, the sum of weights of each edge, which is incident

to a node, can also express the number of papers that are published by this speci�c author. All

previous steps were contained in the same query of which results were wri�en per 1,000,000

records in di�erent text �les on disk, so that we use them later to build the graph.

A total of 2333 �les were created, each consisting of 1,000,000 records with AuthorId 2, Au-

thorId 1 and weight as columns. Initially, the ”PaperAuthorA�liations” �le contains 609,737,802

samples and a�er the pre-process our new generated �les have totally 2,332,260,202 records.

We observed that our data were increased, but we must mention that many records in these

2333 �les are duplicates. �at happens due to the fact that for two given samples A and B, there

is a possibility that AuthorId 1 and AuthorId 2 of A to be equal to AuthorId 2 and AuthorId 1

of B respectively, in addition to the same weights of both records, so the same information

is repeated. In the following stages, we describe how we created the collaboration network,

which is an undirected weighted graph. �us, our actual distinct data are 1,166,130,101.

3.2 Creation of Collaboration Network

In the folder, where the 2333 text �les were created, we read each of them line by line to extract

the nodes of the graph (AuthorId 1 and AuthorId 2) and its edges with their respective weights.

A�er we inserted the nodes into a list of tuples, where each tuple consists of the pair AuthorId 2

and AuthorId 1 who have collaborated to publish at least one paper, we constructed the graph.

Unfortunately, the whole graph did not �t in RAM, so we had to solve this issue by reading

the nodes in a speci�c way, by creating strongly connected components and by importing

them in graph a�erwards. �us, we constructed the network piece by piece (i. e., subgraph by

subgraph) by creating each subgraph (i. e., connected component) independently and inserting

them one a�er the other in graph, without having any problem with RAM while we create the

network, because we can save each generated subgraph in an edgelist �le and load whichever

component we want. We came up with this solution as we realized that if we insert all the

edges into the network, many subgraphs will be created that will not be connected to each

other, due to the fact that researchers from a particular �eld of study are not associated with

scientists (nodes) from other �elds of study, except for some cases.

Generally, an author will not be connected to all other scientists , nor will there be paths from

one researcher to the others, because it is impossible for all scientists to have cooperated with at
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least one researcher from all the other �elds of study. Additionally, except from the nodes and

edges of the graph, we were also concerned with the nodes of which we know their h-index,

since we must know this information for the training of our models in Chapter 6. �us, by using

the ”�eld hindex full” csv �le, which consists of authors with their h-index, we reduced more

the records of co-authorships from 1,166,130,101 to 241,216,080 edges and authors (nodes) from

163,042,809 to 18,475,447 nodes, making the building of subgraphs easier. Mainly, we only kept

the edges between authors, that both exist in the ”�eld hindex full” �le. �e ”�eld hindex full”

�le has 49,231,926 records and contains authors by 14 di�erent scienti�c �elds (e. g., computer

science, engineering, visual art, medicine, business, symbols, chemistry, geography, language,

biology, law, media common, food and biology), with many of the authors belonging to multiple

�elds of research. Despite the reduction of the nodes we still had a huge number of edges that

would make it quite di�cult to generate the collaboration network, perform the extraction of

features as well as train the machine learning algorithms, especially Graph neural networks

that are unable to scale up to such enormous graphs. For all the aforementioned reasons we

concluded to build and examine two di�erent networks. �e �rst one is a graph which is formed

by all the authors of a particular �eld of study and precisely by the authors that belong to the

�eld of engineering. �e second graph consists only of edges with weight at least greater than

a speci�c threshold. For the generation of all graphs we used NetworkX, which is a Python

package for the creation, manipulation, and study of the structure, dynamics, and functions of

complex networks.

(a) (b)

Figure 3.1: Distribution of weighted degree of authors (a) Initial Graph (b) Processed Graph
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(a) (b)

Figure 3.2: Distribution of weight of edges (a) Initial Graph (b) Processed Graph

In Figure 3.1 we observe the distribution of the degree of the nodes (a) of the graph before the

removal of the nodes that are not contained in the ”�eld hindex full” �le and (b) of the graph

a�er the removal of the nodes that are included in the ”�eld hindex full” �le. On the other

hand, in Figure 3.2 we see the distribution of weight of the edges (a) of the graph before the

removal of the nodes that are not contained in the ”�eld hindex full” �le and (b) of the graph

a�er the removal of the nodes that are included in the ”�eld hindex full” �le.

3.3 Graph 35

First of all, we had to select a suitable threshold under which we would reject some edges. We

ended up cu�ing o� any edges that have weight less than 35, so we concluded with 24,440,357

edges and 497,650 nodes. Hence, we built the graph piece by piece generating each strongly

connected component independently and a�er its construction we added it in the graph. From

all the subgraphs created, we got the largest component (i. e., giant component) to reduce

the number of nodes and edges even further, resulting in a subgraph with 176,500 nodes and

24,148,431 edges. Also, we kept only the giant component, because if our graph is composed

of four di�erent subgraphs it is like we have four distinct graphs, considering each subgraph

as a unique dataset. Essentially, the giant component represents a densely academic connected

component. From the giant component we extracted features and made predictions. We chose

35 as a threshold, as it su�ciently reduces the number of nodes and edges which was par-

ticularly useful for exporting additional features, using metrics based on graph analysis and

graph theory. Also, this reduction of size of network facilitated our work when we reached

the stage of machine learning, where we had to train deep learning models like Graph neural
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networks. However, this approach of constructing the graph has two problems. Firstly, we

have a subgraph, on which we will make a biased prediction, as we have a scenario where we

have authors who have collaborated with each other at least 35 times. �is situation does not

re�ect the reality, as we normally have to take into account collaborations that have existed

much fewer times. �us, our sample is not representative of a realistic scenario. Moreover, we

lose information due to the fact that we cut edges with weight less than 35, as some authors

normally may have additional collaborations with other authors who will no longer appear

in the graph, since we removed some edges. �is situation will possibly lead to di�erent re-

sults in the metrics that will be used to extract information about network during its analysis

in the following section (Section 4.3). To avoid these problems, we conducted an additional

experiment, where we took the graph created between the authors belonging to a particular

scienti�c �eld. For reasons similar to those that forced us to choose a threshold we decided to

create the network of authors whose �eld of study is engineering. �e above network, which

contains only edges with weight greater than 35, is mentioned as ”Graph 35”.

Figure 3.3: Distribution of the h-index of authors of Graph 35

3.4 Graph Engineering

From the ”�eld hindex full” �le we extracted all the authors whose scienti�c �eld is engineer-

ing and then from the 2333 �les we kept only the edges (rows of �les) in which both nodes
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(authors) belong to the engineering academic discipline. Next, we constructed the whole col-

laboration network of engineers, as due to its size it could �t in the memory. �is disconnected

graph (i. e., the whole graph of engineers) consists of 1,051,246 edges and 422,714 nodes and

the giant component is composed of 211,689 nodes and 810,264 edges. Once again, we kept

the giant component that essentially represents a densely academic connected component like

Graph 35. We selected the engineering �eld because graphs that could be created in other

�elds of study are either larger than Graph 35 or particularly small. �erefore, we needed to

use a network with a size similar to Graph 35 (slightly larger or smaller) in order for the size

of the two graphs for analysis to be comparable. Furthermore, we need to avoid any problem

during the training of GNN and other machine learning algorithms. Additionally, we had to

execute our experiments in a reasonable time. We observe that even though this graph has

more nodes than Graph 35, it has less edges than Graph 35. �e above network is referred as

”Graph engineering”.

Figure 3.4: Distribution of the h-index of authors of Graph engineering

�e h-index distribution of the authors of Graph 35 is illustrated in Figure 3.3. While, in Fig-

ure 3.4 it is depicted the distribution of the h-index of the authors of Graph engineering. Note

that the values on the vertical axis are in logarithmic scale. As we see, both �gures verify the

well-known power law distribution inherent in many real-world networks [42].
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Feature Extraction

�e processes developed and described above contributed to the extraction of the features,

which were used to train the various machine learning and deep learning algorithms that are

presented later in this chapter. Our goal was to use appropriately the features of the top 10 cited

papers and compute node embeddings and graph metrics, taking advantage of the knowledge

o�ered by the graph and by the representations of the papers. �us, we extracted three di�erent

types of features that were collected to create our �nal feature vector (i. e., dataset) which was

given as an input to train our models. We had to create a feature vector for each of the two

collaboration networks that we examined. So, we have developed a feature embedding for

Graph 35 and a di�erent dataset for Graph engineering.

4.1 Feature vector of top 10 cited papers of author

In this case we picked the top 10 papers of each author that belongs to our graph based on

the number of their citations. Hence, we collected the ten most signi�cant and frequently

cited academic publications of a scientist. To �nd the citations of each paper we used the

”PaperReferences” �le, where we calculated the number of times that a paper is cited as a

reference on another paper. �is �le has two columns (PaperId, PaperReferenceId) and contains

1,544,731,610 records. Each paper reference id can be used as source on a paper id or more and

respectively, each paper id relates to one or more paper reference ids. �us, in order to calculate

citations of each paper, �rstly we removed the duplicate rows, but all the records of the dataset

were distinct. So, the number of data did not change. Finally, we counted the number of paper

39
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ids that refer to a speci�c PaperReferenceId and we repeated this process for every unique

paper reference id. From this process we ended up having the citations for 86,767,704 papers.

Once we �nd the citations, we can �nd the top 10 most cited papers of each author easily.

Once again, we pre-processed the ”PaperAuthorA�liations” �le, by removing duplicate rows

and by keeping records with paper ids, of which we have extracted the citations. A�er that,

we grouped the records by author id and paper id to gather all paper ids for each author one

a�er the other.

�e aforementioned pre-process facilitated our work to detect the top 10 papers of a scientist,

decreasing the time that is needed for the task. A�erwards, we found the top 10 cited papers for

each author. We must mention that there are nodes in our two graphs on which we were unable

to collect their top 10 cited papers. �us, we removed from our two graphs the authors who

may not have published 10 papers either because there is a lack of data or because they actually

have not published so many papers. Also, we ignored the nodes that are le� without neighbors

a�er the �rst removal of the nodes. So, Graph 35 ends up with 175,306 nodes and 24,050,084

edges and Graph engineering remains containing 94,948 nodes and 428,726 edges. Especially,

for Graph engineering the di�erence in its size a�er the removal of nodes is enormous. �ese

two graphs are our �nal networks that will be analyzed later to extract node embeddings and

their graph metrics. Finally, we had to concatenate the abstract embeddings of each abstract

of those of the top 10 cited papers of each author in the graph. We accomplished the same

task for all the nodes in both constructed graphs. �us, we exported a feature vector with

dimension equal to 3000, as each abstract embedding has a dimension of 300. �is feature

embedding is one of our three �nal representations that is used as an input for the training

of the machine learning models and we refer to it brie�y as ”top 10 features”. We extracted

this feature to reinforce the training of our models, taking advantage of information of most

in�uential papers, predicting more accurately the h-index. We created four di�erent editions of

the top 10 features, concatenating SIF gensim Word2Vec or SIF gensim FastText or SIF default

FastText or average abstract embeddings. �e average abstract embeddings were created by

using Word2Vec’s word embeddings. For the extraction of the top 10 features, we used PC 1

(Section 1.3.4).
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4.2 Node Embeddings

For the generation of node embeddings, we used Node2Vec framework that we implemented

for both of our graphs. Learning useful representations from highly structured objects such

as graphs is useful for a variety of machine learning applications. Node2Vec is an algorithm

which provides a semi-supervised method to generate feature representations for nodes on a

graph. �e Node2Vec framework learns low-dimensional representations for nodes in a graph

through the use of random walks starting at a target node. Intuitively, it returns feature rep-

resentations that maximize the likelihood of preserving network neighborhoods of nodes in a

d-dimensional feature space. Node2Vec can learn representations that organize nodes based

on their network roles and/or communities they belong to. So, the algorithm has the ability to

learn representations that embed nodes from the same network community closely together, as

well as to learn representations where nodes that share similar roles have similar embeddings.

Node2Vec is useful for a variety of machine learning applications and representations learned

by the algorithm lead to greater predictive power. Node2Vec maximizes a likelihood objective

over mappings which preserve neighborhood distances in higher dimensional spaces. From

an algorithm design perspective, Node2Vec exploits the freedom to de�ne neighborhoods for

nodes and provide an explanation for the e�ect of the choice of neighborhood on the learned

representations. It follows the intuition that random walks through a graph can be treated like

sentences in a corpus. Each node in a graph is treated like an individual word, and a random

walk is treated as a sentence. By feeding these ”sentences” into a Skip-gram, or by using the

continuous bag of words model paths found by random walks can be treated as sentences, and

traditional data mining techniques for documents can be used. �e algorithm generalizes prior

work, which is based on rigid notions of network neighborhoods, and argues that the added

�exibility in exploring neighborhoods is the key to learning richer representations of nodes in

graphs. �e algorithm is an extension of Word2Vec algorithm for graphs and is considered one

of the best classi�ers for nodes in a graph [43].

Figure 4.1: Node2Vec embedding process
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For each node, Node2Vec uses a �exible neighborhood sampling strategy which allows to

smoothly interpolate between BFS and DFS. It achieves this by simulating a �exible biased

random walk procedure that can explore neighborhoods in a BFS as well as DFS fashion. �is

idea can trade-o� between local and global views of the network. �e algorithm of biased ran-

dom walk will go over each node in the graph and will generate r random walks (i. e., number

of random walks to be generated from each node in the graph), of length l (i. e., how many

nodes are in each random walk ). Given a source node u and a random walk of �xed length

l, let ci denotes the ith node in the walk, starting with c0 = u. Nodes ci are generated by the

following distribution [43]:

P (ci = x | ci−1 = v) =

 πvx
Z if (v, x) ∈ E

0 otherwise
(4.1)

where πvx is the unnormalized transition probability between nodes v and x, and Z is the

normalizing constant. �e biased random walk procedure of Node2Vec uses two parameters

p and q which guide the walk. Hence, it sets the unnormalized transition probability between

nodes v and x to

πvx = αpq(t, x) · wvx (4.2)

where

αpq(t, x) =


1
p if dtx = 0

1 if dtx = 1

1
q if dtx = 2

(4.3)

and dtx denotes the shortest path distance between nodes t and x. Note that dtx must be

one of {0, 1, 2}, and hence, the two parameters are necessary and su�cient to guide the walk.

Intuitively, parameters p and q control how fast the walk explores and leaves the neighborhood

of starting node u. In particular, the parameters allow our search procedure to (approximately)

interpolate between BFS and DFS and thereby re�ect an a�nity for di�erent notions of node

equivalences. �e parameter p controls the possibility of immediately revisiting a node in the

walk, while parameter q allows the search to di�erentiate between ”inward” and ”outward”

nodes. Se�ing parameter p to a high value (> max(q, 1)) ensures that we are likely to sample

an already-visited node in the following two steps. While, if p is low (< min(q, 1)), it would
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lead the walk to backtrack a step and this would keep the walk ”local” close to the starting

node u. On the other hand, if q > 1, the random walk is biased towards nodes close to node

t. Such walks obtain a local view of underlying graph with respect to the start node in the

walk and approximate BFS behavior. Contrary, if q < 1, the walk tends to visit nodes which

are further away from the node t. Such behavior is re�ective of DFS. All above mentioned are

presented on the following example in Figure 4.2. Consider being on the random walk, and

have just transitioned from node t to node v. �e probability to transition from node v to any

one of its neighbors is edge weight ∗ α, where α is depended on the hyperparameters. �e

hyperparameter p controls the probability to go back to node t a�er visiting node v, while q

controls the probability to go explore undiscovered parts of the graphs [43].

Figure 4.2: A�er transitioning to node v from t, the return hyperparameter, p and the in-
out hyperparameter, q control the probability of a walk staying inward revisiting nodes (t),

staying close to the preceeding nodes (x1), or moving outward farther away (x2, x3).

A�er using the above sampling strategy, Node2Vec extends the Skip-gram architecture, which

we described in section of Word2Vec (Section 2.1.1), to networks. �e target of Node2Vec is to

maximize the following objective function:

max
f

∑
u∈V

− logZu +
∑

ni∈NS(u)

f (ni) · f(u)

 (4.4)

�e per-node partition function, Zu =
∑

v∈V exp(f(u) · f(v)) is expensive to compute for

large networks and we approximate it using negative sampling as we used in Word2Vec. Ns(u)

is a network neighborhood of node u generated through the neighborhood sampling strategy

of node2Vec. Node2Vec optimizes the above objective function, using stochastic gradient as-

cent over the model parameters de�ning the features f . We observe that the above function
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is the same as the objective function of Skip-gram of Word2Vec architecture. Node2Vec al-

gorithm is very e�cient over existing state-of-the-art techniques on multi-label classi�cation,

link prediction and community detection or clustering in several real-world networks from

diverse domains. Node2Vec stands for a new way for e�ciently learning state-of-the-art task-

independent representations in complex networks [43].

In our project we trained the Node2Vec model using the default parameters that are recom-

mended by the authors of the paper, where Node2Vec algorithm was represented. Speci�cally,

we set the number of features equal to 128, the number of walks (i. e., , number of random walks

to be generated from each node in the graph) equal to 10, length of walk equal to 80 and size of

window equal to 10. Se�ing p equal to 0.5 and q equal to 2, we forced the algorithm to explore

the nodes that are further away from the current node, having less possibility to sample an

already-visited node. For the extraction of node embeddings, we used the Stellargraph and the

Gensim libraries. Firstly, we ran biased random walk of Stellargraph so that each walk forms a

sequence of nodes, like sentence, that could be fed into Word2Vec. Secondly, we used Gensim’s

Word2Vec to create node embeddings by training the model with sequences of nodes which

were generated through biased random walk. �rough the creation of node embeddings, we

acquired more knowledge about the structure of the graph, a fact that may helped our models

to make more accurate predictions. �e training of Node2Vec for Graph 35 lasted 30,695.95

seconds, while that of Graph engineering lasted 6,405.54 seconds. For the implementation of

Node2Vec and the generation of node embeddings we used the Azure computer (Section 1.3.4).

4.3 Graph Metrics

One of the most prominent ways to estimate the scienti�c impact of an author is based on the

author’s position in the academic collaboration network [44]. �e position can be estimated

through multiple network science centralities and metrics developed to capture di�erent di-

mensions of a node’s impact on the graph.In this work, we utilize a number of them in order to

compare them with the proposed approach and evaluate their usefullness in our framework.

Centrality refers to a group of metrics that aim to quantify the ”importance” or ”in�uence” of

a particular node within a network.
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• Degree: �e sum of the weights of edges adjacent to a vertex. Since the co-authorship

network is undirected, we can not compute the in-degree and out-degree. �e degree of

a vertex v is denoted deg(v) [45].

• Degree centrality: It is the normalized degree of a vertex, i. e., the number of neighbors

of the vertex divided by the maximum possible number of neighbors (i. e., n − 1). �is

measure does not take into account the weights of the edges. Consequently, degree

centrality is equal to the degree of a node that is divided by the maximum possible degree

in a graphG = (V,E). Frequently, the maximum possible degree of graph isN−1 where

N = V and V is the number of nodes in graph. �us, this measure shows the proportion

of connections that a node has. Essentially, degree centrality assigns an importance score

based simply on the number of links held by each node. �is measure informs us how

may direct ”one-hop” connections each node has to other nodes in the network [46–48].

Basically, degree centrality shows us the amount of ”coverage” of a node in a graph. It

is di�erent from degree, extending its concept and giving us a more complete insight of

the graph and nodes. For instance, considering a node v with 5 neighbors. �e node v

is connected with each of its neighbors through an edge of weight 20. �us, the degree

of the node v is equal to 100. On the other hand, considering a node u which links only

to a node i through an edge of weight 100. So, the degree of the node u is equal to 100

and equal to the degree of the node v. However, these two nodes do not have the same

in�uence, as the node v is connected with 5 nodes while the node u links only to one

node. �is di�erence can be captured by the degree centrality.

• Neighbor’s average degree: �e average degree of the neighborhood of a vertex. Es-

sentially, this metric returns the average degree of the neighborhood of each node. For

weighted graphs, measure can be de�ned:

kwnn,i =
1

si

∑
j∈N(i)

wijdeg(j) (4.5)

where si is the weighted degree of node i,wij is the weight of the edge that links i and j

andN(i) are the neighbors of node i. Also, deg(j) is the degree of node j which belongs

to N(i) [49].

• Core number: A subgraph of a graph G is de�ned to be a k-core of G if it is a maximal

subgraph of G in which all vertices have degree at least k [50]. �e core number c(v)
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of a vertex v is equal to the highest-order core (i. e., the largest value c(v) of a k-core

containing that node) that v belongs to. �e notion of core was introduced by Seidman

in 1983. Let G = (V,E) be a graph. V is the set of vertices and E is the set of edges.

We will denote n = |V | and m = |E|. A subgraph H = (W,E | W ) induced by the

set W is a k -core or a core of order k i� ∀v ∈ W : degH(v) ≥ k and H is a maximum

subgraph with this property. �e core of maximum order is also called the main core.

�e core number of vertex v is the highest order of a core that contains this vertex. �e

degree deg(v) can be: in-degree, out-degree, in-degree + out-degree, . . ., determining

di�erent types of cores. In Figure 4.3 an example of cores decomposition of a given graph

is presented. From this �gure we can see the following properties of cores: - �e cores

are nested: i < j ⇒ Hj ⊆ Hi - Cores are not necessarily connected subgraphs [51].

Figure 4.3: 0, 1, 2 and 3 core

• Onion layers: �e onion decomposition is a variant of the k-core decomposition, where

instead of taking into account only the �nal state of the graph when we repeatedly re-

move nodes with degree k, we take into account the recursive removals as well. For

example if we remove the nodes with degree 1, the nodes connected to them with de-

gree 2 will now have degree 1. In k-core we remove them until no node has degree 1.

�e removed nodes belong to the 1-core. In contrast, during the onion decomposition

the aforementioned degree 1 nodes removed �rst will lay in the �rst layer, while the

degree 2 nodes that became degree 1 due to the removal will belong to the second layer,

and so on and so forth. �is metric aims to study how the speed at which one can peel

the network into cores is related to its structure. �us it is introduced the concept of

layers: How many peeling passes are needed to reach a given node. For instance, nodes

of the k-shell belong to its �rst local layer if they are of degree exactly k within the k-

core, or to its second local layer if they are of degree at most k only a�er the removal of
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the �rst layer. �e procedure to identify these layers, which we call the onion decom-

position (OD), is essentially the same as that for the k-core decomposition, but retains

more information. It is a generalization of the algorithm for k-cores with a very simple

modi�cation to produce the OD [52]. �is measure returns the layer of each vertex in

an onion decomposition of the graph.

• Diversity coe�cient: �e diversity coe�cient is a centrality measure based on the

Shannon entropy. Given the probability of selecting a node’s neighbor based on its edge

weight pu,v =
wv,u∑

l∈N(v) wv,l
, the diversity of a vertex is de�ned as the (scaled) Shannon

entropy of the weights of its incident edges.

D(v) =
−
∑

u∈N (v)(pv,u log(pv,u))

log(|N (v)|)
(4.6)

where N(v) is the neighborhood of node v and u is a neighbor of node v. For vertices

with degree less than two the function none is returned [53].

• Community-based centrality: �is centrality measure calculates the importance of

a vertex by considering the link connecting nodes within the community and out the

community. Let C be the set of communities of graph G, dv,c be the number of edges

between vertex v and community c ∈ C and nc the size of community (i. e., number of

nodes in community c) c retrieved by modularity optimization [54]. �e metric is then

de�ned as follows:

CBv =
∑
c∈C

dv,c
nc
n

(4.7)

Basically, we used the Louvain method in order to detect communities. �is method can

detect communities in large networks in a reasonable time and more speci�cally, in time

O (n · log2 n) if n is the number of nodes in the network [55]. It maximizes a modularity

score for each community, where the modularity quanti�es the quality of an assignment

of nodes to communities. �is means evaluating how much more densely connected the

nodes within a community are, compared to how connected they would be in a random

network. �e Louvain algorithm is a hierarchical clustering algorithm, that recursively

merges communities into a single node and executes the modularity clustering on the

condensed graphs [56].

• Community-based mediator: �e mediator centrality takes into consideration the

role of the vertex in connecting di�erent communities, where the communities are again
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computed by maximizing modularity, using Louvain method. In the same community,

the ratio of the sum of edges of the node i within the community to the total edges of a

node i in the network is the internal density of the node. In the same manner, the external

density of the node i de�ned as the ratio of the sum of edges of the node i connected to

other communities to total edges of node in the network. Internal density is expected

to be larger than external density of the node. We can get the impact of a node to share

or disseminate information within the community from internal density and with other

communities from the external density of the node. �erefore, the importance of nodes

can be calculated by both characteristics of densities and the size of networks. We can

assume in social networks if a person has many friends in di�erent communities, he

can play signi�cant roles to receive and di�use information around his circle to a large

extent or more quickly than others. Community-based mediator considers the external

and internal density of the node, and a number of friends the node has in the network

to calculate the impact of the node to receive and di�use information within and across

the communities. �us, the metric relies on the percentages of the node’s weighted

edges that lie in its community relative to its weighted degree and the corresponding

percentage for edges on di�erent communities [54]. To compute it, we �rst calculate the

internal density of vertex v as follows:

pcvv =

∑
u∈N (v)∪cv wv,u

deg(v)
(4.8)

where cv is the community to which v belongs and can be replaced with the other com-

munities to obtain the respective external densities. Given all densities, we can calculate

the entropy of a vertex as follows:

Hv = −pcvv log(pcvv )−
∑

c′∈C\cv

pc
′
v log(pc

′
v ) (4.9)

where C is the set that contains all the communities and pc′v is the external densities.

Finally, we compute the community mediator centrality:

CMv = Hv
deg(v)∑

u∈N (v) deg(u)
(4.10)

• Number of triangles: In the mathematical �eld of graph theory, the triangle graph is a
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planar undirected graph with 3 vertices and 3 edges, in the form of a triangle. In our case

we compute the number of triangles in which a vertex v belongs to. From the triangles

of a node we can acquire extra information about its neighborhood and the structure of

it. Also, we can �nd out in how many ”close” neighborhoods a node is included in [57].

• Local clustering coe�cient: In graph theory, a clustering coe�cient is a measure of

the degree to which nodes in a graph tend to cluster together. Evidence suggests that

in most real-world networks, and in particular social networks, nodes tend to create

tightly knit groups characterised by a relatively high density of ties; this likelihood tends

to be greater than the average probability of a tie randomly established between two

nodes. �e clustering coe�cient di�ers from measures of centrality. It is more akin

to the aggregate density metric, but focused on egocentric networks. Speci�cally, the

clustering coe�cient is a measure of the density of a network. When these connections

are dense, the clustering coe�cient is high. If our ”friends” all know each other, we have

a high clustering coe�cient. If our ”friends” do not know each other, then we have a

low clustering coe�cient. �e local clustering coe�cient of a vertex (node) in a graph

quanti�es how close its neighbours are to being a clique (complete graph). �e Local

Clustering Coe�cient algorithm computes the local clustering coe�cient for each node

in the graph. �e local clustering coe�cient Cn of a node n describes the likelihood that

the neighbors of n are also connected. To compute Cn we use the number of triangles a

node is a part of (Tn), and the degree of the node deg(n). �e formula to compute the

local clustering coe�cient is as follows:

Cn =
2Tn

deg(n) (deg(n)− 1)
(4.11)

where deg(n)(deg(n) − 1) is all the possible edges that could exist among neighbors

of node n. �e local clustering coe�cient Cn for a vertex n can be calculated as the

proportion of links between the vertices within its neighbourhood divided by the number

of links that could possibly exist between them. �e clustering coe�cient of a graph is

closely related to the transitivity of a graph, as both measure the relative frequency of

triangles. �is method ignores edge weights [58].

• Eigenvector centrality: Eigenvector centrality, proposed by Bonacich (1972), is a re-

lated measure of prestige. It relies on the idea that the prestige of node i is related to

the prestige of her neighbors [48]. In eigenvector centrality, important nodes contribute
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more, while in degree centrality, each neighbor contributes equally to centrality. Namely,

a node is central if it is connected to other central nodes. Eigenvector centrality measures

a node’s importance while giving consideration to the importance of its neighbors. �e

eigenvector centrality considers that a node is important if it is linked to by other im-

portant nodes. So, it is used to measure a node’s in�uence in the network. For example,

a node with 300 relatively unpopular neighbors on network would have lower eigen-

vector centrality than someone with 300 very popular neighbors. Also, a node with few

connections could have a very high eigenvector centrality if those few connections were

to very well-connected others. Moreover, a node with a high degree score (i. e., many

connections) may only have a relatively low eigenvector centrality score because many

of those connections are with similarly low-scored nodes. Eigenvector centrality allows

for connections to have a variable value, so that connecting to some vertices has more

bene�t than connecting to others. It is determined by performing a matrix calculation

to determine what is called the principal eigenvector using the adjacency matrix. �e

main principle is that links from important nodes (as measured by degree centrality)

are worth more than links from unimportant nodes. All nodes start o� equal, but as

the computation progresses, nodes with more edges start gaining importance. �eir im-

portance propagates out to the nodes to which they are connected. A�er re-computing

many times, the values stabilize, resulting in the �nal values for eigenvector centrality.

A high eigenvector score means that a node is connected to many nodes who themselves

have high scores [59].

In particular, eigenvector centrality is computed by assuming that the centrality of node

i is proportional to the sum of centrality of its neighbors [48]. Let A = (aij) be the

adjacency matrix of a graph. �e eigenvector centrality xi of node i is given by:

xi =
1

λ

∑
k

ak,i xk

where λ 6= 0 is a constant and a positive proportionality factor. In matrix form we have:

λx = xA

Hence the centrality vector x is the le�-hand eigenvector of the adjacency matrix A

associated with the eigenvalue λ.



51

�ere are many di�erent eigenvalues λ for which a non-zero eigenvector solution exists.

It is wise to choose λ as the largest eigenvalue in absolute value of matrix A. Since the

entries in the adjacency matrix are non-negative, there is a unique largest eigenvalue,

which is real and positive, by the Perron-Frobenius theorem. �is greatest eigenvalue

results in the desired centrality measure. �e power method is one of many eigenvalue

algorithms that may be used to �nd this dominant eigenvector. Let m(v) denote the

signed component of maximal magnitude of vector v. If there is more than one maximal

component, let m(v) be the �rst one. For instance, m(−3, 3, 2) = −3. Let x(0) be an

arbitrary vector. For k ≥ 1: 1. repeatedly compute x(k) = x(k−1)A; 2. normalize x(k) =

x(k)/m(x(k)); until the desired precision is achieved. It follows that x(k) converges to

the dominant eigenvector of A and m(x(k)) converges to the dominant eigenvalue of

A. If matrix A is sparse, each vector-matrix product can be performed in linear time

in the size of the graph. �e method converges when the dominant (largest) and the

sub-dominant (second largest) eigenvalues of A, respectively denoted by λ1 and λ2, are

separated, that is they are di�erent in absolute value, hence when |λ1| > |λ2|. �e rate

of convergence is the rate at which (λ2/λ1)
k goes to 0. Hence, if the sub-dominant

eigenvalue is small compared to the dominant one, then the method quickly converges.

�is notion of centrality is closely related to ways in which scienti�c journals are ranked

based on citations, and also relates to in�uence in social learning. Google’s PageRank

and the Katz centrality are variants of the eigenvector centrality.

• PageRank: PageRank is an algorithm that computes a ranking of the vertices in a graph

based on the structure of the incoming edges. PageRank is an algorithm that measures

the transitive in�uence or connectivity of nodes. It can be computed by either iteratively

distributing one node’s rank (originally based on degree) over its neighbours or by ran-

domly traversing the graph and counting the frequency of hi�ing each node during these

walks. PageRank is a variant of eigenvector centrality. Like eigenvector centrality, the

PageRank can be considered as the ”importance score” of a web page or social network

node. �is importance score will always be a non-negative real number and all the scores

will add to 1, sometimes it might be presented as a percentage. �is score is based on

the links made to that node from other nodes. �e di�erence from eigenvector cen-

trality is that PageRank also takes link direction and weight into account, so links can

only pass in�uence in one direction, and pass di�erent amounts of in�uence. �erefore,

this measure uncovers nodes whose in�uence extends beyond their direct connections
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into the wider network. Because it takes into account direction and connection weight,

PageRank can be helpful for understanding citations and authority.

�e main idea behind the algorithm is that a vertex spreads its importance equally to all

vertices it links to. By doing that, we can then de�ne the score of a node v as follows:

PR(v) =
∑

u∈N (v)

PR(u)

deg(u)
(4.12)

where PR(u) is the score of the node u and deg(u) its out-degree (i. e., degree for our

undirected graphs). �e graph can be seen as a Markov Chain with a transition matrix P.

�is matrix is the column stochastic. Generally, a Markov Chain is de�ned by an initial

distribution and a transition matrix, so we must set the distribution. Let us consider that

the initial distribution is equal to: π =
(
1
N ,

1
N , . . . ,

1
N ,

1
N

)
where N is the total number

of nodes. �erefore, the random walker choose randomly the initial node from where

it can reach all other nodes. At each step, the random walker jump to another node ac-

cording to the transition matrix and the probability distribution is computed using the

following equation: π(t+1) = Pπ(t). We can notice that the distribution π is a stationary

distribution, as a�er an in�nitely long walk, we know that the probability distribution

will converge to a stationary distribution π. Only, if a Markov Chain is strongly con-

nected (like in the case of our graphs), then it admits a stationary distribution. �us, our

problem is to solve the equation: π = Pπ to �nd the stationary distribution. In practice,

π is an eigenvector of the matrix P with the eigenvalue 1 and the PageRank scores are

contained in the eigenvector associated with the eigenvalue 1 of that matrix. Instead of

computing all eigenvectors ofP and select the one which corresponds to the eigenvalue

1, we use the Frobenius-Perron theorem. In our case, the matrixP is positive and square

and the stationary distribution π is necessarily positive because it is a probability distri-

bution. �us, π is the dominant eigenvector of P with the dominant eigenvalue 1. We

use the power method to �nd the dominant eigenvector and compute π. As mentioned

before, the probability distribution at time t de�nes the probability that the walker will

be in a node a�er t steps. It means that the higher the probability, the more important is

the node. �erefore, we can then rank our nodes according to the stationary distribution

we get using the power method [60].

�e algorithm can not converge in the case of dead ends, as it can not reach any other

node because it has no outlik, or in the case of spider trap problem, where the node i
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links only to the node j and j is connected only with i. To solve these two problems,

we introduce the notion of teleportation. �e idea of teleportation is with a certain

probability β, the random walker will jump to another node according to the transition

matrix P and with a probability (1−β)
boldsymbolN , it will jump randomly to any node in the

graph. We get then the new transition matrix R: R = βP + (1 − β))veT where eT =(
1
N , . . . ,

1
N

)
and v = (1, . . . , 1)T . �e parameter β is de�ned as the damping factor and

usually, we set it equal to 0.85. �e matrices R and P share the same properties, so

we can use all the steps, considerations and theorems we applied previously to �nd the

stationary distribution (i. e., PageRank score) [60].

• Laplacian centrality: Laplacian centrality unveils more structural information about

connectivity and density around v (further than its immediate neighborhood). �at is,

comparing with other standard centrality measures proposed for weighted networks

(e. g., degree, closeness or betweenness centrality), Laplacian centrality is an intermedi-

ate measuring between global and local characterization of the importance (centrality)

of a vertex. �e importance (centrality) of a vertex v is determinde by the ability of the

network to respond to the deactivation of the node v from the network. �e response

is quanti�ed by the relative drop in the Laplacian energy EL of the network [61]. �e

Laplacian energy is de�ned as:

EL(G) =
n∑
i=1

λ2i =
n∑
i=1

x2i + 2
∑
i<j

w2
i,j (4.13)

where λi are eigenvalues of the Laplacian matrix of weighted network G, x′is are vertex

sums and wvivj are weights of edges between vertices vi and vj . �e Laplacian matrix is

de�ned as the matrix that are created a�er the subtraction of adjacency matrix A from

degree matrix D, so L = D−A. Mathematically, Laplacian centrality for a node vi in

network G is given by

CL (vi, G) =
(∆E)i
EL(G)

=
EL(G)− EL (Gi)

EL(G)
(4.14)

whereEL(G) is the Laplacian energy of networkG andEL (Gi) is the Laplacian energy

of network G on removal of node vi.

Let G = (V,E,W ) is a weighted network of n vertices {v1, v2, . . . , vn}. Let H be the

network obtained by deleting vertex v from G, then the drop of Laplacian energy with
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respect to vi is

(∆E)i = 2 ·NWM
2 (vi) + 2 ·NWE

2 (vi) + 4 ·NWC
2 (vi) (4.15)

where NWC
2 (vi) , NW

E
2 (vi) , and NWM

2 (vi) are closed 2-walks containing vertex vi,

non-closed 2-walks with vertex vi as one of the end points and non-closed 2-walks with

vertex vi as the middle point respectively. Lemma 1. Let G = (V,E,W ) be a weighted

network and v be an arbitrary vertex of G. �en there are three types of 2-walks con-

taining v with the following observations. Type1. Closed 2-walks containing the vertex

v; the number of such 2-walks is

NWC
2 (v) =

∑
yi∈N(v)

w2
vyi (4.16)

(Blue edges in Figure 4.4)

Type 2. Non-closed 2-walks containing the vertex v as one of the end-vertices: the num-

ber of such 2-walks is

NWE
2 (v) =

∑
yi∈N(v)

 ∑
zj∈{N(yi)−v}

wvyiwyizj

 (4.17)

(Green edges in Figure 4.4)

Type 3. Non-closed 2-walks containing the vertex v as the middle point, the number of

such 2-walks is

NWM
2 (v) =

∑
yiyj∈N(v)yi 6=yj

wyi,vwvyj (4.18)

(Red edges in Figure 4.4 ).

Figure 4.4: Cases of 2-walks

[61]
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�ere are more metrics that could be used, like closeness centrality or betweenness centrality,

but their calculation is extremely time consuming due to the size of our networks. In general,

metrics that are related to the shortest path or the path between the nodes are particularly

time consuming to be calculated due to the size of the analyzed graphs which have millions

or thousands of edges and thousands of nodes. In our thesis statement we computed all the

aforementioned graph metrics, but as it is described in Chapter 6 only some of them had an

e�ective contribution in the prediction task of the h-index and they were included in the sub-

set of graph features with the best performance during the experiments. We refer to these

features as ”graph features” or ”graph metrics”. �e use of eigenvector centrality along with

PageRank is unnecessary, as both measures provide similar information. However we did not

remove it from our graph metrics, because we wanted to observe if it is possible to receive extra

knowledge about the graph which can not be provided by PageRank. For their calculation and

extraction we used the Azure computer (Section 1.3.4). For the computation of the Laplacian

centrality, the diversity coe�cient, the community-based mediator and the community-based

centrality of our graphs, we created and used custom methods. Whereas, for the calculation of

the other graph metrics we used their implementations in Networkx.

4.4 �e Target Value

Finally, we concatenated the three generated features that are described in the previous para-

graphs, creating a new dataset for each graph. In each of these datasets we added the h-index

of each node of network. H-index plays the role of target variable in our project, as it is the

metric that we aimed to predict as accurately as possible. In Graph 35, a�er the �nal formation

of the giant component (i. e., a�er the removal of nodes on paragraph of extraction of top 10

features), we checked the h-index of the authors that belong to this subgraph. It is reasonable

that most of the nodes should have a large h-index, since each author has contributed to the

publication of at least 35 papers. We noticed that there are some authors with h-index less

than 5 and in many cases the given h-index of the dataset does not match the actual h-index,

as there are scientists who have wri�en many papers with several citations, but they have a

low h-index. So, we decided to collect the papers of each author in the graph and with the

help of the ”PaperReferences” �le we calculated the citations of each paper. A�er these pro-

cedures, we calculated the h-index of each author of the graph according to the citations of

his/her papers. So, we computed our own h-index that di�ers from the given h-index of the
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dataset, which is referred as ”calculated h-index”. In addition to the h-index of our data, we

used the calculated h-index when training and predicting models. We also added the calculated

h-index on two datasets. De�nitely, our datasets do not contain all the papers of a scientist and

this approximation will not be absolutely depicted of the h-index. We must mention that the

calculated h-index is estimated for both of our graphs.

Statistical measurement
Graph 35 Graph engineering

Given h-index Calculated h-index Given h-index Calculated h-index

Mean 28.88 31.033 7.6 9.3

Variance 364.859 401.937 16.26 18.233

Table 4.1: �e mean and variance of given and calculated h-index of Graph 35 and Graph
engineering.

�e mean and variance of given and calculated h-index of Graph 35 and Graph engineering

are illustrated in Table 4.1.



Chapter 5

Models

A�er the extraction of new generated features that illustrated in Chapter 4, we proceeded to

implement machine learning algorithms and trained them to predict the h-index of an author.

Initially, we applied some baseline models as a yardstick to measure the e�ciency of our main

models in the prediction of the h-index. Since we had to handle a job, in which we should

forecast accurately a continuous variable (the h-index), we decided to use as a measure of

error of our models, two metrics that are used widely in regression. Hence, we used the mean

absolute error (MAE) and the mean squared error (MSE). Regression analysis consists of a set

of machine learning methods that allow us to predict a continuous outcome variable y based

on the value of one or multiple predictor variables (x). Brie�y, the goal of the regression

model is to build a mathematical equation that de�nes the dependent variable as a function

of the independent variables. Next, this equation can be used to predict the outcome y on

the basis of new values of the predictor variables (x). �e baseline models are dependent on

the implementation of fundamental machine learning algorithms, while our main models are

based on the logic and theory of arti�cial neural networks. More speci�cally, using the PyTorch

library of Python, we implemented a multi-layer perceptron (MLP), a custom deep learning

neural network and a graph neural network. �e results of the performance of all models are

presented and described in Chapter 6. In this chapter we describe the architecture of the models

that were applied. For the training of all models we used the Azure machine (Section 1.3.4).

57
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5.1 Measures of Error

For the purposes of our work, we used two di�erent metrics to compute the error of our models.

�us, we can observe the performance of machine learning implementations be�er, as using

mean squared error, the di�erences of implementations in loss can be represented, even though

they are insigni�cant.

5.1.1 Mean absolute error

Mean Absolute Error (MAE) measures the average magnitude of the errors in a set of predic-

tions, without considering their direction. It is the average over the test sample of the absolute

di�erences between prediction and actual observation where all individual di�erences have

equal weight. MAE is expressed as

MAE =
1

n

n∑
j=1

|ŷj − yj | (5.1)

where ŷj is the predicted value for a sample j, while yj is the true value of this sample. MAE

values closer to zero are be�er.

5.1.2 Mean squared error

�e mean squared error (MSE) of an estimator measures the average of the squares of the errors

i. e., the average squared di�erence between the estimated values and the actual value. �e MSE

is a measure of the quality of an estimator, and values closer to zero are be�er, like MAE. �e

smaller the mean squared error, the closer we are to �nd the line of the best �t. Depending on

the data, it may be impossible to get a very small value for the mean squared error. �e MSE

incorporates both the variance of the estimator (how widely spread the estimates are from one

data sample to another) and its bias (how far o� the average estimated value is from the true

value). MSE is de�ned as

MSE =
1

n

n∑
j=1

(ŷj − yj)2 (5.2)

where ŷj is the predicted value for a sample j, while yj is the true value of this sample. Since

the errors are squared before they are averaged, the MSE gives a relatively high weight to

large errors. �is means that the MSE should be more useful when large errors are particularly
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undesirable. �ere are situations where MAE is steady and MSE increases as the variance

associated with the frequency distribution of error magnitudes also increases.

5.1.3 MAE versus MSE

MAE is used when we have very few or no outliers in the data or when we want to ignore the

outliers while ��ing the model to the data. On the other hand, MSE is applied when we have

a large number of outliers in the data and want to accommodate them while ��ing the model.

MAE will �t data on the basis of the median while MSE will �t the data on the basis of the

average, and since we know that the median will not always be the same as the average, there

is a certain error present which we call bias. �is means that a forecast that is minimizing MAE

will result in a bias. In comparison, a forecast minimizing MSE will not result in bias. As a rule

of thumb MSE should be less than or equal to MAE multiplied by N (number of samples), so

MSE ≤ (MAE ·N). In a special case when MSE is equal to that value it means that there is

possibly one big outlier in the data or that the entire error is concentrated in one prediction.

MAE does not account for the direction of the value. Even if value is negative, positive value

is used for calculation. While MSE does account for positive or negative value. Also, MAE

is less biased for higher values, without adequately re�ecting the performance when dealing

with large error values and without penalizing it. On the other hand, MSE is highly biased for

higher values, penalizing large errors.

5.2 Baseline Models

�e purpose of baseline models is to receive some initial results about a prediction task and

a�er their review, we try to implement more complex architectures, in order to get a be�er

result i. e., a reduced loss in prediction task. �us, baseline is the result of a very basic model

and is used as yardstick of the performance of more sophisticated solutions. We trained all

the baseline models, using their default parameters that are determined by their libraries. For

XGBoost algorithm, we used its original library for Python, the XGBoost library, while for the

rest of the baselines we implemented them through the help of Scikit-Learn library [62]. In our

project we applied fundamental and well-known machine learning algorithms as baselines.



60

5.2.1 Linear SVR

Support Vector Machines (SVMs) are well known in classi�cation problems. However, the use

of SVMs in regression is not as well documented. �ese types of models are known as Support

Vector Regression (SVR). �e model produced by support vector classi�cation depends only on

a subset of the training data, because the cost function for building the model does not consider

the training points that lie beyond the margin. Analogously, the model produced by Support

Vector Regression depends only on a subset of the training data, because the cost function

ignores samples whose prediction is close to their target. As with classi�cation classes, the �t

method will take as argument vectors X , y, only that in this case the y is expected to have

�oating point values instead of integer values. SVM regression is considered a non-parametric

technique because it relies on kernel functions [63, 64].

Suppose we have a set of training data where xn is a multivariate set of N observations with

observed response values yn. To �nd the linear function f(x) = x′w + b and ensure that it

is as �at as possible, �nd f(x) with the minimal norm value wTw. �is is formulated as a

convex optimization problem to minimize J(w) = 1
2 ||w||

2 subject to all residuals having a

value less than ε: ∀n : |yn − (x′nβ + b)| ≤ ε. In most linear regression models, the objective is

to minimize the sum of squared errors. SVR gives us the �exibility to de�ne how much error is

acceptable in our model and will �nd an appropriate line (or hyperplane in higher dimensions)

to �t the data. In contrast to OLS, the objective function of SVR is to minimize the coe�cients

— more speci�cally, the L2-norm of the coe�cient vector — not the squared error. �e error

term is instead handled in the constraints, where we set the absolute error less than or equal

to a speci�ed margin, called the maximum error, ε. We can tune epsilon to gain the desired

accuracy of our model [63–65].

It is possible that no such function f(x) exists to satisfy these constraints for all points. �e al-

gorithm solved the objective function as best as possible but some of the points still fall outside

the margins. As such, we need to account for the possibility of errors that are larger than ε. We

can do this with slack variables. To deal with otherwise infeasible constraints, introduce slack

variables ξn and ξ∗n for each point. �e concept of slack variables is simple: for any value that

falls outside of ε, we can denote its deviation from the margin as ξ. �is approach is similar to

the ”so� margin” concept in SVM classi�cation, because the slack variables allow regression

errors to exist up to the value of ξn and ξ∗n, yet still satisfy the required conditions. We know

that these deviations have the potential to exist, but we would still like to minimize them as



61

much as possible. �us, we can add these deviations to the objective function. Including slack

variables leads to the objective function, also known as the primal formula:

J(w) =
1

2
wTw+C

N∑
n=1

(ξn + ξ∗n) = min
w,b

1

2
wTw+C

∑
i=1

max
(
0,
∣∣yi − (wTφ (xi) + b

)∣∣− ε)
(5.3)

�e constantC is the box constraint, a positive numeric value that controls the penalty imposed

on observations that lie outside the ε margin and helps to prevent over��ing (regularization).

As C increases, our tolerance for points outside of ε also increases. As C approaches 0, the

tolerance approaches 0 and the equation collapses into the simpli�ed (although sometimes

infeasible) one. �is value determines the trade-o� between the �atness of f(x) and the amount

up to which deviations larger than ε are tolerated. �is corresponds to dealing with a so called

epsilon-insensitive loss (i. e., errors of less than ε are ignored). �e function 5.3 is directly

optimized by LinearSVR (φ is the identity function) [63–65].

Some of advantages of Linear SVR is its e�ciency in dealing with extra large data sets (say,

several millions training data pairs) and working with high dimensional data (thousands of

features, a�ributes) in both sparse and dense format. Also, there is no need for expensive com-

puting resources (personal computer is a standard platform)[63–65]. In our project, we used

linear SVR because if we had used SVR, the �t time complexity would be more than quadratic

with the number of samples, making it hard to scale to datasets with more than a couple of

10000 samples (like in our case). For large datasets, it is recommended to use LinearSVR instead

of SVR, possibly a�er a Nystroem transformer (Section 5.2.1.1). �us, before the implementa-

tion of LinearSVR we passed our input through a Nystroem transformer (Section 5.2.1.1). We

applied the Nystroem transformer, using its default parameters. �e results of Nystroem trans-

former were given as input for the training of LinearSVR. We implemented this baseline, using

its default parameters.

5.2.1.1 Kernel trick & Nystroem method

Obtaining a non-linear decision boundary, because not all problems are linear, we embed the

data in a higher-dimensional space using some non-linear mapping, for example x 7→ x2.

Learning classi�ers in high dimensions is expensive and also we have to come up with the non-

linear mapping. If we start out with a given number of features n and we want to compute all

polynomial terms up to degree 2, we get more than n2 features, and this rises exponentially in
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the degree d of polynomials we want. �ere is a very simple trick to circumvent this problem,

though, which is the kernel-trick. �e essence of the kernel-trick is that if we can describe

an algorithm in a certain way - which is using only inner products - then we never need to

actually use the feature mapping, as long as we can compute the inner product in the feature

space. For the polynomial feature map, the inner product in the feature space is given by

k(x, y) = (xT y + c)d which is easy enough to compute for any degree d. What is even be�er

is that we do not really need to start from a feature map. We can specify an inner product

k(x, y) directly and under mild condition (if k is a Mercer-kernel), there exists a space H for

which k is the scalar product. It is possible to construct a mapping from the original Rn → H

but we never actually need to compute it. One of the most popular k is the Gaussian (or RBF)

kernel k(x, y) = exp(γ||x − y||2), which is a scalar product in a space that is even in�nite

dimensional. One of the most popular applications of the kernel trick is the kernelized Support

Vector Machine (SVM) [66, 67].

A major problem for kernel-based predictors, such as Support Vector Machines (SVMs), is that

the amount of computation required to �nd the solution scales asO(n3), where n is the number

of training examples. One of the characteristics of kernelized algorithms is that their runtime

and space complexity is basically independent of the dimensionality of the input space, but

rather scales with the number of data points used for training. �us, on the one hand, we

have kernelized SVMs, which work quite well on complicated problems that are not linearly

separable, but do not scale well to many samples. On the other hand, we have SGD optimization

that is very e�cient, but only produces linear classi�ers. A trend is to map our features to a

high dimensional space and then apply a linear classi�er, which yields non-linear decisions in

the original space. So, what we want is to have an embedding into a reasonably sized space, so

that we can then learn a linear classi�er using SGD on the new representation. If we would use

all data points, we would map to an RN dimensional space and have the same scaling problems

that the kernel-SVM has. Actually, we would do worse, as we would really need to store all

kernel values [66, 67].

However, we can think of an easy approximation: We do not go to the full space spanned by all

N training points, but we just use a subset. �is will only yield an approximate embedding but

if we keep the number of samples we use the same, the resulting embedding is independent of

dataset size and we can basically choose the complexity to suit our problem. �is algorithm is

called Nystroem method (or Nystroem embedding). �e Nystroem method is a general method

for low-rank approximations of kernels. It achieves this by essentially subsampling the data



63

on which the kernel is evaluated. By default Nystroem uses the radial basis function kernel,

but it can use any kernel function or a precomputed kernel matrix. �e number of samples

used - which is also the dimensionality of the features computed - is given by a parameter.

�is method approximates a kernel map using a subset of the training data and it constructs

an approximate feature map for an arbitrary kernel using a subset of the data as basis [66, 67].

�us, instead of the kernel trick we can use kernel approximation methods to accomplish a

similar job. Kernel approximation contains functions that approximate the feature mappings

that correspond to certain kernels, as they are used for example in support vector machines

(see Support Vector Machines). �e following feature functions perform non-linear transfor-

mations of the input, which can serve as a basis for linear classi�cation or other algorithms.

�e advantage of using approximate explicit feature maps compared to the kernel trick, which

makes use of feature maps implicitly, is that explicit mappings can be be�er suited for online

learning and can signi�cantly reduce the cost of learning with very large datasets. Standard

kernelized SVMs do not scale well to large datasets, but using an approximate kernel map it

is possible to use much more e�cient linear SVMs. In particular, the combination of kernel

map approximations with SGDRegressor can make non-linear learning on large datasets pos-

sible. We initialized the Nystroem transformer using its default variables that are supported

by Scikit-learn library [66, 67].

5.2.2 Decision Tree Regression

Decision Trees are a supervised learning method used for classi�cation and regression. �e

goal is to create a model that predicts the value of a target variable by learning simple decision

rules inferred from the data features. Decision tree regression observes features of an object

and trains a model on the structure of a tree to predict data in the future to produce meaningful

continuous output. Continuous output means that the output/result is not discrete, i. e., it is

not represented just by a discrete, known set of numbers or values [68–70].

For our goal we used the implementation of Scikit-learn library which uses an optimised ver-

sion of the CART algorithm. CART (Classi�cation and Regression Trees) is very similar to C4.5,

but it di�ers in that it supports numerical target variables (regression) and does not compute

rule sets. �e representation for the CART model is a binary tree. �is is the binary tree from

algorithms and data structures, nothing too fancy. Each root node represents a single input

variable x and a split point on that variable (assuming the variable is numeric). �e leaf nodes
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of the tree contain an output variable y which is used to make a prediction. �e tree can be

stored to �le as a graph or a set of rules. With the binary tree representation of the CART model

described above, making predictions is relatively straightforward. Given a new input, the tree

is traversed by evaluating the speci�c input started at the root node of the tree. A learned

binary tree is actually a partitioning of the input space. We can think of each input variable

as a dimension on a p-dimensional space. �e decision tree split this up into rectangles (when

p = 2 input variables) or some kind of hyper-rectangles with more inputs. New data is �ltered

through the tree and lands in one of the rectangles and the output value for that rectangle is

the prediction made by the model. �is gives us some feeling for the type of decisions that a

CART model is capable of making, e. g., boxy decision boundaries. Decision trees are formed

by a collection of rules based on variables in the modeling dataset. Rules based on variables’

values are selected to get the best split to di�erentiate observations based on the dependent

variable. Once a rule is selected and splits a node into two, the same process is applied to each

”child” node (i. e., it is a recursive procedure). Spli�ing stops when CART detects no further

gain can be made, or some pre-set stopping rules are met. (Alternatively, the data are split as

much as possible and then the tree is later pruned.) [68–70].

For our regression task, given a node m, common criteria to minimize as for determining

locations for future splits are Mean squared error. MSE sets the predicted value of terminal

nodes to the learned mean value ȳm of the node:

ȳm = 1
Nm

∑
y∈Qm

y

H (Qm) = 1
Nm

∑
y∈Qm

(y − ȳm)2
(5.4)

Given training vectors xi ∈ Rn, i = 1, . . . , l and a label vector y ∈ Rl, a decision tree recur-

sively partitions the feature space such that the samples with the same labels or similar target

values are grouped together. Let the data at node m be represented by Qm with Nm samples.

For each candidate split θ = (j, tm) consisting of a feature j and threshold tm partition the

data into Qle�
m (θ) and Qright

m (θ) subsets

Qle�
m (θ) = {(x, y) | xj <= tm}

Q
right
m (θ) = Qm\Qleftm (θ)
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�e quality of a candidate split of nodem is then computed using loss functionH() and specif-

ically, in our case we used mean squared error, the default criterion of decision tree regressor.

G (Qm, θ) =
N le�
m

Nm
H
(
Qleftm (θ)

)
+
N

right
m

Nm
H
(
Qright
m (θ)

)
Select the parameters that minimises the impurity

θ∗ = argminθG (Qm, θ)

Recurse for subsets Qle�
m (θ∗) and Qright

m (θ∗) until the maximum allowable depth is reached,

Nm < min samples or Nm = 1 [68–70].

Generally, decision trees are simple to understand and interpret. Also, they require li�le data

preparation and the cost of using the tree (i. e., predicting data) are logarithmic in the number

of data points used to train the tree. Decision trees are capable of handling both numerical

and categorical data. However, they have many disadvantages. First of all, they are unstable,

meaning that a small change in the data can lead to a large change in the structure of the optimal

decision tree. Decision trees are o�en relatively inaccurate. Many other predictors perform

be�er with similar data and for data including categorical variables with di�erent number of

levels, information gain in decision trees is biased in favor of those a�ributes with more levels.

Also, decision-tree learners can create over-complex trees that do not generalise the data well

(over��ing). Mechanisms such as pruning, se�ing the minimum number of samples required

at a leaf node or se�ing the maximum depth of the tree are necessary to avoid this problem.

Moreover, Decision trees can be unstable because small variations in the data might result in

a completely di�erent tree being generated. �is problem is mitigated by using decision trees

within an ensemble. Finally, decision tree learners create biased trees if some classes dominate.

It is therefore recommended to balance the dataset prior to ��ing with the decision tree [68–

70].

5.2.3 SGDRegressor

Stochastic Gradient Descent (SGD) is a simple and very e�cient approach to ��ing linear clas-

si�ers and regressors under convex loss functions such as (linear) Support Vector Machines

and Logistic Regression. Linear model ��ed by minimizing a regularized empirical loss with

SGD. SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each
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sample at a time and the model is updated along the way with a decreasing strength schedule

(aka learning rate). Even though SGD has been around in the machine learning community

for a long time, it has received a considerable amount of a�ention just recently in the context

of large-scale learning. SGD has been successfully applied to large-scale and sparse machine

learning problems o�en encountered in text classi�cation and natural language processing.

Given that the data is sparse, the classi�ers and regressors in this module easily scale to prob-

lems with more than 105 training examples and more than 105 features. Strictly speaking, SGD

is merely an optimization technique and does not correspond to a speci�c family of machine

learning models. It is only a way to train a model. Stochastic Gradient Descent is e�cient, but

it requires a number of hyperparameters such as the regularization parameter and the num-

ber of iterations and is sensitive to feature scaling. �e class SGDRegressor implements a plain

stochastic gradient descent learning routine which supports di�erent loss functions and penal-

ties to �t linear regression models. SGDRegressor is well suited for regression problems with

a large number of training samples (n > 10.000) [71, 72].

Given a set of training examples (x1, y1) , . . . , (xn, yn) where xi ∈ Rm and yi ∈ R (yi ∈ −1, 1

for classi�cation), our goal is to learn a linear scoring function f(x) = wTx + b with model

parametersw ∈ Rm and intercept b ∈ R. In order to make predictions for binary classi�cation,

we simply look at the sign of f(x). To �nd the model parameters, we minimize the regularized

training error given by

E(w, b) =
1

n

n∑
i=1

L (yi, f (xi)) + αR(w)

where L is a loss function that measures model (mis)�t and R is a regularization term (aka

penalty) that penalizes model complexity; α > 0 is a non-negative hyperparameter that con-

trols the regularization stength[71, 72]. In our case, we used the default loss function of ordi-

nary least squares. In our project, before the implementation of SGDRegressor we passed our

input through a Nystroem transformer (Section 5.2.1.1). We applied the Nystroem transformer,

using its default parameters. �e results of Nystroem transformer were given as input for the

training of this baseline model. We implemented this model, using its default parameters.
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5.2.4 LASSO

LASSO, short for Least Absolute Shrinkage and Selection Operator, is a statistical formula

whose main purpose is the feature selection and regularization of data models. �e method

was �rst introduced in 1996 by Statistics Professor Robert Tibshirani [73]. LASSO regres-

sion is a type of linear regression that uses shrinkage. Shrinkage is where data values are

shrunk towards a central point, like the mean. LASSO is quite similar conceptually to ridge

regression. �e LASSO method regularizes model parameters by shrinking the regression co-

e�cients, reducing some of them to zero, but unlike ridge regression which penalizes sum of

squared coe�cients (the so-called L2 penalty), LASSO penalizes the sum of their absolute val-

ues (L1 penalty). It o�ers models with high prediction accuracy. �e accuracy increases since

the method includes shrinkage of coe�cients, which in return reduces variance and minimizes

bias. It performs best when the number of observations is low and the number of features is

high. It heavily relies on parameter α, which is the controlling factor in shrinkage. �e larger

α becomes, then the more coe�cients are forced to be zero. As α increases, bias increases

while α decreases, variance increases. When α is equal to zero, then the model becomes the

Ordinary Least Squares regression. Consequently, when α increases, the variance decreases

signi�cantly, and the bias in the result increases, too [73–77].

LASSO is also a useful tool in eliminating all variables that are irrelevant and that are not

related to the response variable. Using this type of regularization (L1), some of the features

are completely neglected for the evaluation of output. So, LASSO regression not only helps

in reducing over��ing but it can help us in feature selection. �e feature selection phase

occurs a�er the shrinkage, where every non-zero value is selected to be used in the model. L1

regularization adds a penalty equal to the absolute value of the magnitude of coe�cients. �is

type of regularization can result in sparse models with few coe�cients. On the other hand, L2

regularization (e. g., Ridge regression) does not result in elimination of coe�cients or sparse

models. �is makes the LASSO far easier to interpret than the Ridge. Mathematically, LASSO

consists of a linear model with an added regularization term [73–77]. �e objective function

to minimize is:

min
w

1

2nsamples
‖Xw − y‖22 + α‖w‖1 (5.5)



68

�e LASSO estimate solves the minimization of the least-squared penalty with α‖w‖1 added,

where α is a constant and ‖w‖1 is the l1-norm of the coe�cient vector.

‖w‖1 =

p∑
j=1

|wj | (5.6)

5.2.5 Elastic Net

Linear regression is the standard algorithm for regression that assumes a linear relationship

between inputs and the target variable. A problem with linear regression is that estimated

coe�cients of the model can become large, making the model sensitive to inputs and possibly

unstable. �is is particularly true for problems with few observations (samples) or more sam-

ples (n) than input predictors (p) or variables (so-called p >> n problems). One approach

to addressing the stability of regression models is to change the loss function to include addi-

tional costs for a model that has large coe�cients, adding penalties to the loss function during

training that encourage simpler models that have smaller coe�cient values. Linear regression

models that use these modi�ed loss functions during training are referred to collectively as

penalized linear regression. Elastic net is a popular type of regularized linear regression that

combines two popular penalties, speci�cally the L1 and L2 penalties of the LASSO and Ridge

methods respectively. L2 penalty is to penalize a model based on the sum of the squared co-

e�cient values. �is penalty minimizes the size of all coe�cients, although it prevents any

coe�cients from being removed from the model [74–77].

L2 =

p∑
j=1

w2
j (5.7)

L1 penalty is to penalize a model based on the sum of the absolute coe�cient values. �is

penalty minimizes the size of all coe�cients and allows some coe�cients to be minimized to

the value zero, which removes the predictor from the model.

L1 =

p∑
j=1

|wj | (5.8)

In elastic net a hyperparameter p is provided to assign how much weight is given to each of

the L1 and L2 penalties. �e parameter p is used to weight the contribution of the L1 penalty

and one minus the p value is used to weight the L2 penalty. �e bene�t is that elastic net
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allows a balance of both penalties, which can result in be�er performance than a model with

either one or the other penalty on some problems. Another hyperparameter α that controls the

weighting of the sum of both penalties to the loss function. Elastic net regularization improves

performance when the number of features is larger than the sample size, allows the method to

select strongly correlated variables together, and improves overall prediction accuracy. Elastic

net is useful when there are multiple features which are correlated with one another. LASSO is

likely to pick one of these at random, while elastic net is likely to pick both. When p > n (the

number of covariates is greater than the sample size) LASSO can select only n covariates (even

when more are associated with the outcome) and it tends to select one covariate from any set of

highly correlated covariates. Additionally, even when n > p, ridge regression tends to perform

be�er given strongly correlated covariates [74–77]. �e objective function to minimize in this

case is:

min
w

1

2nsamples
‖Xw − y‖22 + αρ‖w‖1 +

α(1− ρ)

2
‖w‖22 (5.9)

5.2.6 Gradient Boosting Regressor

Gradient boosting or gradient tree boosting or Gradient Boosted Decision Trees (GBDT) is a

machine learning technique for regression and classi�cation problems, which produces a pre-

diction model in the form of an ensemble of weak prediction models, typically decision trees

(especially CART trees). When a decision tree is the weak learner, the resulting algorithm is

called gradient boosted trees, which usually outperforms random forest. It builds the model

in a stage-wise fashion like other boosting methods do, and it generalizes them by allowing

optimization of an arbitrary di�erentiable loss function. �e term ”gradient” in ”gradient boost-

ing” comes from the fact that the algorithm uses gradient descent to minimize the loss. �e loss

function is generally the squared error (particularly for regression problems). As we combine

more and more simple models, the complete �nal model becomes a stronger predictor. Trees

are added one at a time to the ensemble and �t to correct the prediction errors made by prior

models. Like linear regression we have concepts of residuals in Gradient Boosting Regression

as well. Gradient boosting Regression calculates the di�erence between the current prediction

and the known correct target value. �is di�erence is called residual. A�er that Gradient boost-

ing Regression trains a weak model that maps features to that residual. �is residual predicted

by a weak model is added to the existing model input and thus this process nudges the model

towards the correct target. Repeating this step repeatedly improves the overall model predic-

tion [78–80]. Speci�cally, Gradient boosting regressors are additive models whose prediction
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yi for a given input xi is of the following form:

ŷi = FM (xi) =
M∑
m=1

hm(xi) (5.10)

where the hm are estimators called weak learners in the context of boosting. Gradient Tree

Boosting uses decision tree regressors of �xed size as weak learners. �e constant M corre-

sponds to the parameter of number of estimators. Similar to other boosting algorithms, a GBRT

is built in a greedy fashion:

Fm(x) = Fm−1(x) + hm(x), (5.11)

where the newly added tree hm is ��ed in order to minimize a sum of losses Lm, given the

previous ensemble Fm−1:

hm = arg min
h
Lm = arg min

h

n∑
i=1

l (yi, Fm−1 (xi) + h (xi)) (5.12)

where l(yi, F (xi)) is de�ned by the loss parameter, detailed in the next section. By default,

the initial model F0 is chosen as the constant that minimizes the loss: for a least-squares loss,

this is the empirical mean of the target values. Using a �rst-order Taylor approximation, the

value of l can be approximated as follows:

l(yi, Fm−1(xi) + hm(xi)) ≈ l(yi, Fm−1(xi)) + hm(xi)

[
∂l(yi, F (xi))

∂F (xi)

]
F=Fm−1

. (5.13)

Brie�y, a �rst-order Taylor approximation says that l(z) ≈ l(a) + (z − a)∂l(a)∂a . Here, z corre-

sponds to Fm−1 (xi) + hm (xi), and α corresponds to Fm−1 (xi).

�e quantity
[
∂l(yi,F (xi))
∂F (xi)

]
F=Fm−1

is the derivative of the loss with respect to its second pa-

rameter, evaluated at Fm−1(x). It is easy to compute for any given Fm−1 (xi) in a closed form

since the loss is di�erentiable. We will denote it by gi. Removing the constant terms, we have:

hm ≈ arg min
h

n∑
i=1

h (xi) gi

�is is minimized ifh (xi) is ��ed to predict a value that is proportional to the negative gradient

−gi. �erefore, at each iteration, the estimator hm is ��ed to predict the negative gradients of

the samples. �e gradients are updated at each iteration. �is can be considered as some kind
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of gradient descent in a functional space [78–80].

5.2.7 XGBoost

XGBoost is a decision-tree-based ensemble Machine Learning algorithm that has recently been

dominating applied machine learning for structured or tabular data. In prediction problems in-

volving unstructured data (images, text, etc.) arti�cial neural networks tend to outperform all

other algorithms or frameworks. However, when it comes to small-to-medium structured/tab-

ular data, decision tree, based algorithms, are considered best-in-class right now. XGBoost is

used for supervised learning problems and it is an implementation of Gradient Boosted Deci-

sion Trees designed for speed and performance. XGBoost is an optimized distributed gradient

boosting library designed to be highly e�cient, �exible and portable. It stands for ”Extreme

Gradient Boosting”. XGBoost, like Gradient Boosting Machines (GBMs), applies the principle

of boosting weak learners (CARTs generally) using the gradient descent architecture. However,

it improves upon the base GBM framework through systems optimization and algorithmic en-

hancements. XGBoost approaches the process of sequential tree building using parallelized

implementation. XGBoost tackles one of the major ine�ciencies of gradient boosted trees

which is the consideration of the potential loss for all possible splits to create a new branch

(especially if we consider the case where there are thousands of features, and therefore thou-

sands of possible splits). It tackles this ine�ciency by looking at the distribution of features

across all data points in a leaf and using this information to reduce the search space of pos-

sible feature splits. Although XGBoost implements a few regularization tricks, this speed up

is by far the most useful feature of the library, allowing many hyperparameter se�ings to be

investigated quickly. Nearly all of them are designed to limit over��ing. �e stopping crite-

rion for tree spli�ing within GBM framework is greedy in nature and depends on the negative

loss criterion at the point of split. For a given dataset with N examples and M features, a tree

ensemble model uses K additive functions to predict the output [81, 82].

ŷi = φ (xi) =
K∑
k=1

fk (xi) , fk ∈ F (5.14)

Where F is the space of regression trees (also known as CART). Here q represents the structure

of each tree that maps an example to the corresponding leaf index. T is the number of leaves

in the tree. Each fk corresponds to an independent tree structure q and leaf weights w. Unlike

decision trees, each regression tree contains a continuous score on each of the leaf, using wi to
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represent score on ith leaf. For a given example, model will use the decision rules in the trees

(given by q) to classify it into the leaves and calculate the �nal prediction by summing up the

score in the corresponding leaves (given by w). To learn the set of functions used in the model,

we minimize the following regularized objective:

L(φ) =
∑
i

l (ŷi, yi) +
∑
k

Ω (fk) (5.15)

where l is a di�erentiable convex loss function that measures the di�erence between the predic-

tion ŷi and the target value yi. Here Ω is the regularization term which penalizes the complex-

ity of the model. �e additional regularization term helps to smooth the �nal learnt weights to

avoid over-��ing. Intuitively, the regularized objective will tend to select a model employing

simple and predictive functions. When the regularization parameter is set to zero, the objective

falls back to the traditional gradient tree boosting. Ω is set as:

Ω(f) = γT +
1

2
λ‖w‖2 (5.16)

�e model needs to learn those functions fi, each containing the structure of the tree and

the leaf scores. Learning tree structure is much harder than traditional optimization problem

where we can simply take the gradient. It is intractable to learn all the trees at once. Instead,

it is used an additive strategy: �x what it has learned, and add one new tree at a time. �e

prediction value at step t is de�ned as yti . �en we have

ŷ
(0)
i = 0

ŷ
(1)
i = f1 (xi) = ŷ

(0)
i + f1 (xi)

ŷ
(2)
i = f1 (xi) + f2 (xi) = ŷ

(1)
i + f2 (xi)

· · ·

ŷ
(t)
i =

t∑
k=1

fk (xi) = ŷ
(t−1)
i + ft (xi)

(5.17)
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At each step it is used the tree that minimizes the objective, so using Equation 5.17, the

objective function becomes:

L(t) =
n∑
i=1

l
(
yi, ŷ

(t)
i

)
+

t∑
i=1

Ω (fi)

=
n∑
i=1

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+ Ω (ft) + constant

(5.18)

�is means that it is added the ft that most improves XGBoost model according to Equa-

tion 5.15. Taylor expansion of the loss function up to the second order approximation is used

to quickly optimize the objective in the general se�ing:

L(t) =
n∑
i=1

[
l
(
yi, ŷ

(t−1)
i

)
+ gift (xi) +

1

2
hif

2
t (xi)

]
+ Ω (ft) + constant (5.19)

where the gi and hi are de�ned as

gi = ∂
ŷ
(t−1)
i

l
(
yi, ŷ

(t−1)
i

)
hi = ∂2

ŷ
(t−1)
i

l
(
yi, ŷ

(t−1)
i

) (5.20)

A�er we remove all the constants, the speci�c objective at step t becomes

n∑
i=1

[
gift (xi) +

1

2
hif

2
t (xi)

]
+ Ω (ft) (5.21)

�is becomes the optimization goal for the new tree. One important advantage of this de�ni-

tion is that the value of the objective function only depends on gi and hi. �is is how XGBoost

supports custom loss functions. It can be optimized every loss function, including logistic re-

gression and pairwise ranking, using exactly the same solver that takes gi and hi as an input.

Besides the regularized objective mentioned in above paragraphs, two additional techniques

are used to further prevent over��ing. �e �rst technique is shrinkage introduced by Fried-

man. Similar to a learning rate in stochastic optimization, shrinkage reduces the in�uence of

each individual tree and leaves space for future trees to improve the model. �e second tech-

nique is column (feature) subsampling. �is technique is used in RandomForest. Using column

sub-sampling prevents over-��ing even more than the traditional row sub-sampling (which is

also supported). �e usage of column sub-samples also speeds up computations of the parallel

algorithm [81, 82].
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�e most important factor behind the success of XGBoost is its scalability in all scenarios. �e

system runs more than ten times faster than existing popular solutions on a single machine

and scales to billions of examples in distributed or memory-limited se�ings. �e scalability

of XGBoost is due to several important systems and algorithmic optimizations. �ese inno-

vations include: a novel tree learning algorithm is for handling sparse data; a theoretically

justi�ed weighted quantile sketch procedure enables handling instance weights in approxi-

mate tree learning. Parallel and distributed computing makes learning faster which enables

quicker model exploration[81, 82]. We used XGBoost regressor in our project and we set the

default parameters except for parameter n estimators, that determines the number of gradient

boosted trees and the parameter objective which speci�es the learning task and the corre-

sponding learning objective. Hence, we set the parameter n estimators equal to 10 and the

parameter objective equal to reg:linear. In our case we used mean squared error (MSE) as our

loss function, so the objective became:

obj(t) =
n∑
i=1

(
yi −

(
ŷ
(t−1)
i + ft (xi)

))2
+

t∑
i=1

Ω (fi)

=
n∑
i=1

[
2
(
ŷ
(t−1)
i − yi

)
ft (xi) + ft (xi)

2
]

+ Ω (ft) + constant
(5.22)

5.3 Multi-layer Perceptron

A multi-layer perceptron (MLP) is a class of feedforward arti�cial neural network (ANN). Multi-

layer perceptron is a supervised learning algorithm that learns a function f(·) : Rm → Ro

by training on a dataset, where m is the number of dimensions for input and o is the number

of dimensions for output. Given a set of features X = x1, x2, . . . , xm and a target y, it can

learn a non-linear function approximator for either classi�cation or regression and to model

the correlation (or dependencies) between those inputs and outputs. �e term ”multi-layer

perceptron” does not refer to a single perceptron that has multiple layers. Rather, it contains

many perceptrons that are organized into layers. An MLP consists of at least three layers of

nodes: an input layer, a hidden layer and an output layer. Except for the input nodes, each

node is a neuron that uses a nonlinear activation function. MLP utilizes a supervised learning

technique called backpropagation for training. Its multiple layers and non-linear activation

distinguish MLP from a linear perceptron. It can distinguish data that are not linearly sepa-

rable. �ey do this by using a more robust and complex architecture to learn regression and
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classi�cation models for di�cult datasets. MLPs form the basis for all neural networks and

have greatly improved the power of computers when applied to classi�cation and regression

problems. Computers are no longer limited by XOR cases and can learn rich and complex

models thanks to the multi-layer perceptron [83–85].

Figure 5.1: One hidden layer MLP: �e le�most layer, known as the input layer, consists
of a set of neurons {xi|x1, x2, . . . , xd} representing the input features. Each neuron in the
hidden layer transforms the values from the previous layer with a weighted linear summation
w1x1 + w2x2 + . . . + wdxd, followed by a non-linear activation function f(·) : Rm → Ro
- like the hyperbolic tan function. �e output layer receives the values from the last hidden
layer and transforms them into output values. xo and zo are the bias neurons usually take the

value 1.

Training involves adjusting the parameters, or the weights and biases, of the model in order to

minimize error. Backpropagation is used to make those weigh and bias adjustments relative to

the error, and the error itself can be measured in a variety of ways, including by mean squared

error (MSE) or mean absolute error (MAE). Just as with the perceptron, the inputs are pushed

forward through the MLP by taking the dot product of the input with the weights that exist

between the input layer and the hidden layer (W1). �is dot product yields a value at the hidden

layer. We do not push this value forward as we would with a perceptron though. MLPs utilize

activation functions at each of their calculated layers. �ere are many activation functions to

use as recti�ed linear units (ReLU), sigmoid function, tanh. We forward the calculated output

at the current layer through any of these activation functions. Once the calculated output at

the hidden layer has been passed through the activation function, we push it to the output layer

in the MLP by taking the dot product with the corresponding weights (W2). We forward the

calculated output at the current layer through any of these activation functions of the output

layer. At the output layer, the �nal calculations will either be used for a backpropagation

algorithm that corresponds to the activation function that was selected for the MLP (in the
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case of training) or a decision will be made based on the output (in the case of testing). In

the backward pass, using backpropagation and the chain rule of calculus, partial derivatives of

the error function with respect to the various weights and biases are backpropagated through

the MLP. �at act of di�erentiation gives us a gradient, or a landscape of the error, along

with the parameters that may be adjusted as they move the MLP one step closer to the error

minimum. �is can be done with any gradient-based optimisation algorithm such as stochastic

gradient descent. MLP with hidden layers have a non-convex loss function where there exists

more than one local minimum. �erefore, di�erent random weight initializations can lead to

di�erent validation accuracy. Also, MLP is sensitive to feature scaling and it requires tuning

a number of hyperparameters such as the number of hidden neurons, layers, and iterations

[83–85].

For our project we used a multi-layer perceptron model for a regression problem. Our MLP

model consists of an input layer, a hidden layer, and an output layer. First of all, we used

standard scaler because MLP and generally neural networks are sensitive to feature scaling.

Input variables may have di�erent units that, in turn, may mean the variables have di�erent

scales. Di�erences in the scales across input variables may increase the di�culty of the problem

being modeled. An example of this is that large input values (e. g., a spread of hundreds or

thousands of units) can result in a model that learns large weight values. A model with large

weight values is o�en unstable, meaning that it may su�er from poor performance during

learning and sensitivity to input values resulting in higher generalization error. �us, we pre-

processed our input data to transform them into the same scale. A�er that inputs were pushed

forward through the MLP by taking the dot product of the input with the weights W1 that

exist between the input layer and the hidden layer. �is dot product passes through the ReLU

activation function. Vector b1 is the bias and it has dimensions 1xM .

H = ReLU
(
XWT

1 + b1

)
(5.23)

Where X is the input matrix NxD (i. e., N the number of samples and D the number of

features) and W1 is the matrix of weights of hidden layer with dimensions MxD (M is the

size of hidden layer i. e., the number of hidden neurons). �e matrix H is the output of ReLU

and has dimensions NxM . H is multiplied by the weights of output layer W2 and again this

dot product is given as argument to ReLU function which calculates the predicted value of our
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model.

O = ReLU
(
HW T

2 + b2

)
(5.24)

Where W2 is the matrix of weights of output layer with dimensions KxM (K is the size of

output layer i. e., the number of output neurons), in our case we have only one output neuron

soK = 1 andW2 has dimension 1xM . O is the matrix of predicted values (positive continuous

values) for every sample of our dataset and has dimension Nx1. Scalar variable b2 is the bias.

�e goal of our model is to predict accurately the h-index which is a continuous value, hence

we have a regression task. Due to this fact MLP uses mean absolute error as loss function,

comparing predicted values with true values in order to calculate the error of our model. �e

target of our model is to minimize the loss function of mean absolute error:

L =

∑N
i=1 |ŷi − yi|

N
(5.25)

To train the model, we chose to minimize MAE instead of MSE since MAE is more interpretable

in the case of h-index, and provides a generic and even measure of how well our model is per-

forming. �erefore, for very large di�erences between the h-index and the predicted h-index

(e. g., y = 120 vs. ŷ = 40), the function does not magnify the error . Starting from initial

random weights, multi-layer perceptron (MLP) minimizes the loss function by repeatedly up-

dating these weights. A�er computing the loss, a backward pass propagates it from the output

layer to the previous layers, providing each weight parameter with an update value meant to

decrease the loss. Our MLP model uses Adam optimizer to update parameters and we per-

formed mini-batch training, feeding the model with mini-batches of 256 samples instead of

the whole dataset. Finally, it is worth noting that MLP implements dropout in hidden layer

to avoid over��ing and generalize the model. �e size of hidden layer, the number of epochs,

the amount of dropout and the learning rate consist of the hyperparameters of our model. We

used K-fold validation (with k = 5), exhaustive search (grid search) and the dataset based on

Graph 35 in order to determine the hyperparameters of MLP model. �us, a�er the grid search

we �nd the optimal values of hyperparameters and we set the size of hidden layer equal to 32,

the learning rate equal to 0.01, the dropout equal to 0.3 and the number of epochs equal to 500.
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5.3.1 Adam

Adam is an optimization algorithm that can be used instead of the classical stochastic gradient

descent procedure to update network weights iterative based in training data. It is di�erent

from classical stochastic gradient descent. Stochastic gradient descent maintains a single learn-

ing rate for all weight updates and the learning rate does not change during training. A learn-

ing rate is maintained for each network weight (parameter) and separately adapted as learning

unfolds. Instead, Adam computes individual adaptive learning rates for di�erent parameters

from estimates of �rst and second moments of the gradients. Generally, it combines the ad-

vantages of Adaptive Gradient Algorithm (AdaGrad) which works well with sparse gradients,

and Root Mean Square Propagation (RMSProp) which works well in on-line se�ings. AdaGrad

maintains a per-parameter learning rate that improves performance on problems with sparse

gradients (e. g., natural language and computer vision problems). In contrast, RMSProp main-

tains per-parameter learning rates that are adapted based on the average of recent magnitudes

of the gradients for the weight (e. g., how quickly it is changing). Beyond AdaGrad and RM-

SProp, Adam makes use of the average of the second moments of the gradients (the uncentered

variance) instead of adapting the parameter learning rates based on the average �rst moment

(the mean) as in RMSProp. Speci�cally, the algorithm calculates an exponential moving aver-

age of the gradient and the squared gradient, in order to estimate the moments. �e moving

averages themselves are estimates of the �rst moment (the mean) and the second raw moment

(the uncentered variance) of the gradient [86].

mt = β1mt−1 + (1− β1) gt (5.26)

vt = β2vt−1 + (1− β2) g2t (5.27)

where g is the gradient on current mini-batch and β1 and β2 are the hyperparameters of Adam

that control the decay rates of these m and v moving averages. Since m and v are estimates

of �rst and second moments, ideally, we want to have the following property: E [mt] = E [gt]

E [vt] = E
[
g2t
]
. Expected values of the estimators should be equal to the expected value of

gradients. If these properties held true, that would mean, that we have unbiased estimators.

However, because we initialize averages with zeros and β1 and β2 values close to 1.0 (recom-

mended by authors of Adam), the estimators are biased towards zero [86]. To prove it, initially
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we need a formula for m:

m0 = 0

m1 = β1m0 + (1− β1) g1 = (1− β1) g1

m2 = β1m1 + (1− β1) g2 = β1 (1− β1) g1 + (1− β1) g2

m3 = β1m2 + (1− β1) g3 = β21 (1− β1) g1 + β1 (1− β1) g2 + (1− β1) g3

(5.28)

�us,

mt = (1− β1)
t∑
i=0

βt−i1 gi (5.29)

. �en, expanding the expected value of m we can observe how it relates to the true �rst

moment, so we can correct for the discrepancy of the two:

E [mt] = E
[
(1− β1)

∑t
i=1 β

t−i
1 gi

]
= E [gi] (1− β1)

∑t
i=1 β

t−i
1 + ζ

= E [gi]
(
1− βt1

)
+ ζ

(5.30)

In a similar way, we formulate v

vt = (1− β2)
t∑
i=0

βt−i2 g2i (5.31)

and expanding the expected value of vwe can observe how it relates to the true second moment:

E [vt] = E

[
(1− β2)

t∑
i=1

βt−i2 · g2i

]

= E
[
g2t
]
· (1− β2)

t∑
i=1

βt−i2 + ζ

= E
[
g2t
]
·
(
1− βt2

)
+ ζ

(5.32)

In both equations (Equation 5.30, Equation 5.32), ζ = 0 if the true �rst moment E [gi] true

second moment E
[
g2i
]

are stationary; otherwise ζ can be kept small since the exponential de-

cay rate β1 and β2 should be chosen such that the exponential moving average assigns small

weights to gradients too far in the past. We, therefore, divide by the term
(
1− βt1

)
the Equa-

tion 5.30 and the Equation 5.32 by the term
(
1− βt2

)
in order to correct the estimators, so that

the expected value is the one we want. �is step is usually referred to as bias correction [86].

�e �nal formulas for our estimators will be as follows:
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m̂t =
mt

1− βt1
(5.33)

v̂t =
vt

1− β2
(5.34)

Finally, we update the weights based on formula:

wt = wt−1 − η
m̂t√
v̂t + ε

(5.35)

where w is model weights, η is the step size (it can depend on iteration) and ε is a small scalar

(e. g., 10−8 ) used to prevent division by 0 [86].

5.3.2 ReLU

In a neural network, the activation function is responsible for transforming the summed wei-

ghted input from the node into the activation of the node or output for that input. �e recti�er

is a piecewise linear function and it is used as an activation function de�ned as the positive

part of its argument:

f(x) = x+ = max(0, x) (5.36)

where x is the input to a neuron. In 2011, the use of the recti�er as a non-linearity has

been shown to enable be�er training of deeper networks, without requiring unsupervised

pre-training, compared to the widely used activation functions prior to 2011, e. g., the logistic

sigmoid and its more practical counterpart, the hyperbolic tangent. �e recti�er is the most

popular activation function for deep neural networks [87–89].

Figure 5.2: Graphical representation of the ReLU function
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5.3.3 Dropout

In machine learning, regularization is a way to prevent over-��ing. Regularization reduces

over��ing by adding a penalty to the loss function. By adding this penalty, the model is trained

such that it does not learn interdependent set of features weights. Dropout is an approach to

regularization in neural networks which helps reducing interdependent learning amongst the

neurons. During training, some number of layer outputs are randomly ignored or ”dropped

out.” �is has the e�ect of making the layer look-like and be treated-like a layer with a di�erent

number of nodes and connectivity to the prior layer. In e�ect, each update to a layer during

training is performed with a di�erent ”view” of the con�gured layer. By dropping an unit out,

we mean temporarily removing it from the network, along with all its incoming and outgoing

connections. Dropout is implemented per-layer in a neural network. It can be used with most

types of layers, such as dense fully connected layers, convolutional layers, and recurrent layers

such as the long short-term memory network layer. Dropout may be implemented on any or

all hidden layers in the network as well as the input layer. It is not used on the output layer.

A new hyperparameter p is introduced that speci�es the probability at which outputs of the

layer are dropped out, or inversely, the probability at which outputs of the layer are retained.

�us, during training phase, in each hidden layer, that dropout is implemented, model ignores

a random fraction, p of nodes (and corresponding activations). Dropout is not used during

testing phase when making a prediction with the �t network. �e weights of the network

will be larger than normal because of dropout. �erefore, before �nalizing the network, the

weights are �rst scaled by the chosen dropout rate. �e network can then be used as per

normal to make predictions. Hence, during test phase, the model uses all activation functions,

but reduces them by a factor p (to account for the missing activations during training). �e

rescaling of the weights can be performed at training time instead, a�er each weight update at

the end of the mini-batch [3, 90–92].

Figure 5.3: Representation of dropout [3]
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�e feed-forward operation of a standard neural network is:

z
(l+1)
i = f l+1

(
w

(l+1)
i xl + b

(l+1)
i

)
With dropout, the feed-forward operation becomes:

δl ∼ Bernoulli(p)

x̃l = δl ∗ xl

zl+1
i = f l+1

(
wl+1
i x̃l + bl+1

i

)
where l is a layer l, xl is the output of layer l which is given as input in layer l+ 1 and f l+1 is

the activation function of layer l+1. δl is the dropout rate of layer l and it follows the Bernoulli

distribution, thus δl is equal to 1 with probability p and 0 otherwise.

Figure 5.4: A single layer linear unit out of network

Figure 5.5: Illustration of dropout in each iteration

Generally, dropout forces a neural network to learn more robust features that are useful in

conjunction with many di�erent random subsets of the other neurons. Also, dropout roughly

doubles the number of iterations required to converge. However, the training time for each

epoch is less. With h hidden units, each of which can be dropped, we have 2h possible models.

In testing phase, the entire network is considered, and each activation is reduced by a factor p

[3, 90–92].
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5.4 Deep Learning Neural Network

For the purpose of our thesis statement, except for MLP network and GNN we decided to con-

struct a custom deep learning neural network model (CDL i. e., Custom Deep Learning). We

refer to this model as ”CDL”. Essentially, this model is a feedforward arti�cial neural network

and is used for supervised learning. Our custom deep learning algorithm consists of four lay-

ers of nodes: an input layer (fully connected layer), two fully connected hidden layers and an

output layer (fully connected layer). Basically, the formation and structure of the �rst hidden

layer is not the usual one. It consists 3 di�erent parallel fully connected layers or clusters of

neurons independently of each other. Our approach is to split the dataset, in terms of fea-

tures, in three di�erent parts (sub-datasets) of which each one is forwarded as an input in each

separate cluster. �us, the �rst cluster is fed with the top 10 features, while the second one

takes as an input the node embeddings. Finally, the third one receives as an input the graph

metrics. �e computed results of three clusters are concatenated, generating the results of

�rst hidden layers which are pushed forward to second hidden layer. �e calculated output of

second hidden layer is pushed at the output layer where the �nal calculations will either be

used for a backpropagation algorithm that corresponds to the activation function (in the case

of training) or a decision will be made based on the output (in the case of testing). Training

involves adjusting the parameters, or the weights and biases, of the model to minimize error.

Backpropagation is used to make those weigh and bias adjustments relative to the error, and

the error itself can be measured by mean absolute error (MAE).



84

Figure 5.6: Structure of the CDL.
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Figure 5.7: Another representation of the structure of the CDL.
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Our initial step is to standardize inputs because neural networks are sensitive to feature scaling.

Input variables may have di�erent units that, in turn, may mean the variables have di�erent

scales. Di�erences in the scales across input variables may increase the di�culty of the problem

being modeled. �us, we pre-processed our input data to transform them into the same scale.

�en, we split dataset in three parts, and we fed into the �rst cluster the top 10 features, into

the second cluster the node embeddings and into the third cluster the graph metrics. �e top

10 features are pushed forward through the custom deep learning model by taking the dot

product of this feature vector with the weights W1. �is dot product passes through the ReLU

activation function. �e same process applies to node embeddings and graph metrics of which

we take their dot product with the weights W2 and W3 respectively and we implement ReLU

on these two dot products.

H1 = ReLU
(
X1W

T
1 + b1

)
(5.37)

H2 = ReLU
(
X2W

T
2 + b2

)
(5.38)

H3 = ReLU
(
X3W

T
3 + b3

)
(5.39)

Where X1 is the input matrix of �rst cluster of neurons (i. e., top 10 features) with dimensions

NxD1 (i. e., N the number of samples and D1 the number of top 10 features, here D1 = 3000)

and W1 is the matrix of weights of the �rst sub-layer with dimensions M1xD1 (M1 is the

size of the �rst sub-layer of �rst hidden layer i. e., the number of neurons of �rst cluster of

neurons, here M1 = 128). �e matrix H1 is the output of ReLU and has dimensions NxM1.

Also, X2 is the input matrix of the second cluster of neurons (i. e., node embeddings) with

dimensions NxD2 (i. e., N the number of samples and D2 the number of node embeddings,

hereD2 = 128) andX3 represents the input of the third cluster of neurons (i. e., graph metrics)

with dimensions NxD3 (i. e., N the number of samples and D3 the number of graph metrics,

here D3 = 13 and in some experiments equal to 9). W2 is the matrix of weights of the second

sub-layer with dimensions M2xD2 (M2 is the size of the second sub-layer i. e., the number of

neurons of second cluster of neurons, here M2 = 128) and W3 is the matrix of weights of the

third sub-layer with dimensions M3xD3 (M3 is the size of the third sub-layer i. e., the number

of neurons of third cluster of neurons, here M3 = 128). �e matrix H2 is the output of ReLU

and has dimensionsNxM2 and matrixH3 is the calculated result of ReLU and has dimensions

NxM3. Vectors b1, b2, b3 are the bias of three sub-layers and they have dimensions 1xM1,
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1xM2 and 1xM3 respectively.

A = [H1||H2||H3] = CONCAT
(
H1,H2,H3

)
(5.40)

Where A is the concatenated matrix with dimensions NxM (M is the size of three clusters of

neurons i. e., the size of the �rst hidden layer, so M = M1 +M2 +M3, here M = 384) �en,

A is multiplied by the weights of output layer W4 and this dot product is given as argument

to ReLU function.

Z = ReLU
(
AW T

4 + b4

)
(5.41)

Where W4 is the matrix of weights of the second hidden layer with dimensions KxM (K is

the size of the second hidden layer i. e., the number of second hidden neurons, here K = 128)

and Z is the output of the second hidden layer and has dimensions NxK . Vector b4 is the bias

and it has dimensions 1xK . Finally, Z is multiplied by the weights of output layer WO and for

once again this product is forwarded to ReLU function, which calculates the predicted value

of our model.

O = ReLU
(
ZW T

O + bO

)
(5.42)

Where WO is the matrix of weights of output layer with dimensions LxK (L is the size of

output layer i. e., the number of output neurons), in our case we have only one output neuron

so L = 1 andWO has dimension 1xK . O is the vector of predicted values (positive continuous

values) for every sample of our dataset and has dimension Nx1. Scalar value bO is the bias of

output layer. �e target of our model is to predict accurately h-index which is a continuous

value, hence we have a regression task. Due to this fact we use mean absolute error as loss

function, comparing predicted values with true values in order to calculate the error of our

model. �e target of our model is to minimize the loss function of mean absolute error (see

5.3):

L =

∑N
i=1 |ŷi − yi|

N
(5.43)

Where ŷi is the predicted value and yi is the target value. Starting from initial random weights,

our model minimizes the loss function by repeatedly updating the weight matrices. A�er com-

puting the loss, a backward pass propagates it from the output layer to the previous layers,

providing each weight parameter with an update value meant to decrease the loss. �e model

uses Adam optimizer in order to update parameters and we perform mini-batch training, feed-

ing our model with mini-batches of 256 samples instead of whole dataset. Hence, using the
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mini-batch we are updating our parameters frequently as well as we can use vectorized im-

plementation for faster computations. Finally, it is worth noting that we applied dropout (Sec-

tion 5.3.3) and batch normalization (Section 5.4.1) in the two hidden layers to avoid over��ing

and to generalize it. �e batch normalization is implemented in the end of each layer of model,

except for output layer. Next, we concatenate the results of above three computations to gen-

erate the output of �rst hidden layer. �e size of hidden layers, the number of epochs, the

amount of dropout and the learning rate consist of hyperparameters of model. We use K-fold

validation (with k=5), exhaustive search (grid search) and the feature matrix based on Graph

35 in order to determine the parameters of model. �us, a�er the grid search, we �nd optimal

values of hyperparameters and we set the size of �rst, second and third cluster of neurons

equal to 128. Moreover, we set equal to 128 the size of the second hidden layer, the learning

rate equal to 0.01, the dropout equal to 0.3 and the number of epochs equal to 500.

5.4.1 Batch Normalization

Normalization, in general refers to squashing a diverse range of numbers to a �xed range. For

instance, consider the inputs x1 and x2 to a simple two parameter model f(x) = w1x1 +w2x2.

If both x1 and x2 are in completely di�erent scales, say a range of x1 is [1000, 2000] and

range of x2 is [0.1, 0.5], then using them as-is has implications on optimizing our loss function.

Intuitively, the model parameters do not have a level playing �eld in this scenario and the

network is susceptible to be overpowered by w1. By normalizing both x1 and x2 ranges to say

[0, 1] brings all inputs to a similar scale and helps the model learn faster.

A deep learning model generally is a cascaded series of layers, each of which receives some in-

put, applies some computations, and then hands over the output to the next layer. Essentially,

the input to each layer constitutes a data distribution that the layer is trying to ”�t” in some

way. As long as the input data distribution to a layer remains fairly consistent over multiple

batches over the data, the layer in question can do it is ”task” of ��ing the data easily. As

di�erent mini batches of data are loaded and passed through the network, the distribution of

the inputs to layers deep in the network may change a�er each mini batch when the weights

are updated. �is can cause the learning algorithm to forever chase a moving target. In addi-

tion to ��ing the underlying distribution, the layer has to account for the dri�s in the layer

input distribution. �is phenomenon of shi�ing input distributions is known as the Internal

Co-variate shi�. Model is updated layer-by-layer backward from the output to the input using
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an estimate of error that assumes the weights in the layers prior to the current layer are �xed.

Very deep models involve the composition of several functions or layers. �e gradient tells

how to update each parameter, under the assumption that the other layers do not change. In

practice, we update all layers simultaneously. Because all layers are changed during an update,

the update procedure is forever chasing a moving target. For example, the weights of a layer

are updated given an expectation that the prior layer outputs values with a given distribu-

tion. �is distribution is likely changed a�er the weights of the prior layer are updated. Batch

normalization aims to avoid unstable gradients, reduce the e�ects of network initialization on

convergence and allow faster learning rates leading to faster convergence. �ese are achieved

by scaling the output of the layer, speci�cally by standardizing each intermediate layer’s inputs

with the dataset mean and standard deviation. Recall that standardization refers to rescaling

data to have a mean of zero and a standard deviation of one, e. g., a standard Gaussian. Ideally,

like input normalization, Batch Normalization should also standardize each layer based on the

entire dataset but that is non-trivial so the authors make the simpli�cation to normalize using

mini-batch statistics instead. �us, it is called batch normalization because during training,

we normalize the activation of previous layer for each batch(i. e., apply a transformation that

maintains the mean activation close to 0 and the activation standard deviation close to 1). �e

standardization is applied to the inputs to the layer, namely the input variables or the output

of the activation function from the prior layer. Given the choice of activation function, the

distribution of the inputs to the layer may be quite non-Gaussian. In this case, there may be

bene�t in standardizing the summed activation before the activation function in the previous

layer. Batch normalization may be used on the inputs to the layer before or a�er the activation

function in the previous layer. �e goal of Batch Normalization is to achieve a stable distribu-

tion of activation values throughout training. �e following equations illustrate the steps of

batch normalization in a more mathematical way [89, 93–95].

µB =
1

m

m∑
i=1

xi (5.44)

σ2B =
1

m

m∑
i=1

(xi − µB)2 (5.45)

x̂i =
xi − µB√
σ2B + ε

(5.46)

yi = γx̂i + β ≡ BNγ,β (xi) (5.47)
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�e above �rst three equations (Equation 5.44, Equation 5.45, Equation 5.46) calculate the batch

mean and standard deviation and then normalize the input with these moments respectively.

�e epsilon in the third step is a small number to help numerical stability. �e key thing to note

is that normalization happens for all input dimensions in the batch separately. �e last equation

(Equation 5.47) introduces two parameters: γ (scaling) and β (shi�ing) to further transform the

normalized input. �e reason is that just plain normalization reduces the expressive power of

the subsequent activation by limiting its range (for sigmoid this will be constricting its output

to the linear regime of the S-curve). To overcome this, batch normalization allows the network

to learn the γ and β parameters to let the layer ”adjust” the normalized input distribution to be

more expressive. Contrary to the mean and variance which are computer per mini-batch, the γ

and β parameters are learned by the model as part of the training process along with the orig-

inal model parameters. Batch Normalization impacts network training on a fundamental way,

as it actually makes the landscape of the corresponding optimization problem be signi�cantly

smoother. Intuitively, this means that batch normalization takes a complex loss surface full of

hills and valleys and makes it simpler, with less and smaller hills and valleys. �is ensures,

in particular, that the gradients are more predictive and thus allow for use of larger range of

learning rates and faster network convergence. �e optimization process can now take more

con�dent and larger steps (with a larger learning rate) towards global optima and has fewer

chances of ge�ing stuck in dreaded local optimas. Moreover, normalizing the inputs to the

layer has an e�ect on the training of the model, dramatically reducing the number of epochs

required. It can also have a regularizing e�ect, reducing generalization error much like the

use of activation regularization. Finally, deep neural networks can be quite sensitive to the

technique used to initialize the weights prior to training. �e stability to training brought by

batch normalization can make training deep networks less sensitive to the choice of weight

initialization method [89, 93–95].

5.5 Graph Neural Network

Unstructured data are data that have not been processed or do not have a pre-de�ned format

which makes them di�cult to analyze. Examples of such data are audio, emails, and social

media postings. To make sense of this data and to derive inferences from them, we need a

structure that de�nes a relationship between these unstructured data points. �e common

machine learning architectures and algorithms do not seem to perform well with these kinds
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of data. �e graph data structure has proven tremendously successful while working with

unstructured data. Graphs are helpful in de�ning concepts which are abstract, like relation-

ships between entities. Graphs have tremendous expressive powers and are therefore gaining

a lot of a�ention in the �eld of machine learning. Since each node in the graph is de�ned by

its connections and neighbors, graph neural networks can capture the relationships between

nodes in an e�cient manner. �us in recent years, GNNs have a�racted a lot of a�ention

in the machine learning community and have been successfully applied to several problems.

Graph neural networks (GNNs) refer to the neural network architectures that operate on a

graph. �e aim of a GNNs is for each node in the graph to learn an embedding containing in-

formation about its neighborhood (nodes directly connected to the target node via edges). �is

embedding can then be used for di�erent problems like node labelling, node prediction, edge

prediction. �us, a�er having embeddings associated with each node, we can convert edges

by adding feed forward neural network layers and combine graphs and neural networks. �e

need for graph neural networks arose from the fact that a lot of data available to us are in an

unstructured format.

5.5.1 Advantages & Applications of GNN

In the last few years, GNNs have found enthusiastic adoption in social network analysis and

computational chemistry, especially for drug discovery. In the case of social media graphs,

GNNs are great at content recommendation. When a user follows other users with a similar

taste in political leaning (for example), GNNs can be used for node classi�cation to predict if

a certain piece of content on the site can be sent to the news feed of said user. Also, these

models can be applied to graph classi�cation and link prediction tasks. In graph classi�cation,

the whole graph is classi�ed into di�erent categories. It is like image classi�cation, but the

target changes into the graph domain. �e applications of graph classi�cation are numerous

and range from determining whether a protein is an enzyme or not in bioinformatics, to cate-

gorizing documents in NLP, or social network analysis. On the other hand, in link prediction

the algorithm has to understand the relationship between entities in graphs, and it also tries to

predict whether there is a connection between two entities. It is essential in social networks to

infer social interactions or to suggest possible friends to the users. It has also been used in rec-

ommender system problems and in predicting criminal associations. Essentially, GNNs can be

signi�cantly e�cient in complex cases, replacing traditional techniques. In NLP, we know that

the text is a type of sequential data which can be described by an RNN or an LSTM. However,
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graphs are heavily used in various NLP tasks, due to their naturalness and ease of representa-

tion. Recently, there has been a surge of interest in applying GNNs for a large number of NLP

problems like text classi�cation, exploiting semantics in machine translation, user geolocation,

relation extraction, or question answering. Furthermore, GNN architectures can be applied to

image classi�cation problems. One of these problems is scene graph generation, in which the

model aims to parse an image into a semantic graph that consists of objects and their semantic

relationships. Given an image, scene graph generation models detect and recognize objects

and predict semantic relationships between pairs of objects [96].

5.5.2 Functionality

�e basic idea of GNNs is to learn neighborhood embeddings by aggregating information from

a node’s neighbors via edges using neural networks. Each node has a set of features de�ning

it. Each edge may connect nodes with similar features together. It shows some kind of interac-

tion or relationship between them. �e graph performs message passing between the nodes.

�is process is also called Neighbourhood Aggregation, because it involves pushing messages

(i. e., the embeddings) from surrounding nodes around a given reference node, through edges.

Message passing refers to passing and receiving information between nodes about its neighbor-

hood. Consider a target node having its initial embeddings. It receives messages (embeddings)

from its neighbors passed via edge neural networks. Data from these edges are aggregated and

passed to the activation unit of a node to get a new set of embeddings for the node. Combining

the aggregated embeddings of its neighbors with the initial embedding of the node and pass-

ing to the node’s activation unit or �lter will provide the new embedding for node A, which

will also contain information about its neighbors. In this manner, each node gets a new set of

embeddings for itself which determines its position in the graph. A GNN model consists of a

series of neighborhood aggregation layers. Each one of these layers uses the graph structure

and the node feature vectors from the previous layer to generate new representations for the

nodes. �e feature vectors are updated by aggregating local neighborhood information. Let

h
(0)
v ∈ Rd denote the initial feature vector of vertex v, and suppose we have a GNN model

that contains L neighborhood aggregation layers. In the lth neighborhood aggregation layer

(l > 0), the hidden state h
(l)
v of a node v is updated as follows:

m(l)
v = AGGREGATE(l)

({
h(l−1)
u |u ∈ N (v)

})
h(l)
v = COMBINE(l)

(
h(l−1)
v ,m(l)

v

) (5.48)
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Where N(v) is the set of neighbors of vector v.

Figure 5.8: An overview of the proposed model for a graph of 4 nodes (u, v, y, w).

�is process is performed, in parallel, on all nodes in the network as embeddings in lth neigh-

borhood aggregation layer depend on embeddings in (l−1)th neighborhood aggregation layer.

By de�ning di�erent AGGREGATE(l) and COMBINE(l) functions, we obtain a di�erent GNN

variant. For the GNN to be end-to-end trainable, both functions need to be di�erentiable. Fur-

thermore, since there is no natural ordering of the neighbors of a node, the AGGREGATE(t)

function must be permutation invariant. With various iterations or L layers of message pass-

ing, a node learns more and more about its neighborhood, its distant neighbors and their own

information (features) as well. �is creates an even more accurate representation of the entire

graph. Once we perform the neighbourhood aggregation procedure a few times, we obtain a

completely new set of embeddings for each node. Eventually, each node has a rough idea about

the complete graph (or a part of it, depending on the number of iterations and node-node dis-

tance/path or layers considered). �e node feature vectors h
(L)
v of the �nal neighborhood

aggregation layer are usually passed on to a fully connected neural network to produce the

output. Generally, the �nal vector representations of all nodes is used either as inputs to other

pipelines or to simply represent the graph [97].
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Figure 5.9: Here is the �nal graph with the fully updated node embedding vectors a�er n
repetitions of Message Passing. We can take the representations of all the nodes and sum

them together to get H.

5.5.3 Our Architecture

Our model merge the AGGREGATE and COMBINE functions presented above into a single

function. A high-level illustration of the proposed approach is shown in Figure 5.8. Given the

co-authorship graph (either Graph 35 or Graph engineering) G = (V,E,Wg) where vertices

are annotated with feature vectors h
(0)
v ∈ Rd stemming from the learnt representations of top

10 cited of the author’s papers, the node embeddings and the graph metrics, each neighborhood

aggregation layer of the �rst model updates the representations of the vertices as follows:

h(l)
v = ReLU

(
W(l) h(l−1)

v +
∑

u∈N (v)

W(l) h(l−1)
u

)
(5.49)

where W(l) is the matrix of trainable parameters of the lth message passing layer. In matrix

form, the above is equivalent to:

H(l) = ReLU
(
Ã H(l−1) W(l)

)
(5.50)

where A is the adjacency matrix of graph and Ã = A+I. Note that in both Equation 5.49 and

Equation 5.50, we omit biases for clarity of presentation. �e above message passing procedure

is in fact similar to the one of the GIN-0 model [98]. Inspired by Jumping Knowledge Networks

[99], instead of using only the �nal vertex representations h
(T )
v (i. e., obtained a�er L message

passing steps), we also use the representations of the earlier steps h
(1)
v , . . . ,h

(L−1)
v . Note that

as one iterates, vertex representations capture more and more global information. However,

retaining more local, intermediary information might be useful too. �us, we concatenate the
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representations produced at the di�erent steps, �nally obtaining hv =
[
h
(1)
v ||h(2)

v || . . . ||h(T )
v

]
= CONCAT

(
h
(1)
v ,h

(2)
v , . . . ,h

(T )
v

)
. �ese vertex representations are then passed on to one

fully connected layer (output layer) to produce the output. In our model the output layer

applies just a linear transformation (i. e., linear layer):

Ŷ = hvW0 (5.51)

where WO is the vector of weights of output layer, with dimension Mx1. M is size of initials

embeddings of nodes plus the size of embeddings of nodes a�er the �rst message passing plus

the size of embeddings of nodes a�er the second message passing. Ŷ is the �nal vector of

predictions of h-index. Its size isNx1, whereN is the number of dataset’s samples. �e target

of our model is to predict accurately h-index which is a continuous value, hence we have a

regression task. Due to this fact, we used mean absolute error as loss function, comparing

predicted values with true values in order to calculate the error of our model. �e target of our

model is to minimize the loss function of mean absolute error (see 5.3):

L =

∑N
i=1 |ŷi − yi|

N
(5.52)

Where ŷi is the predicted value and yi is the target value. Starting from initial random weights,

our model minimizes the loss function by repeatedly updating the weight matrices. A�er com-

puting the loss, a backward pass propagates it from the output layer to the previous layers,

providing each weight parameter with an update value meant to decrease the loss. �e model

uses Adam optimizer to update parameters. Unlike the other two neural networks, we trained

the GNN model with the whole dataset instead of using mini-batches, since GNNs’ training

uses the adjacency matrix of the graph, so they must be fed with the whole information about

the graph. Finally, it is worth noting that we applied dropout (Section 5.3.3) and batch normal-

ization (Section 5.4.1) in the two hidden layers in order to avoid over��ing and to generalize

it. �e batch normalization is implemented in the end of each layer of model, except for output

layer. In our implementation of GNN we have two neighborhood aggregation layers (L = 2).

�e size of �rst and second neighborhood aggregation layer, the number of epochs, the amount

of dropout and the learning rate consist of hyperparameters of model. We used K-fold valida-

tion (with k=5), exhaustive search (grid search), Graph 35 and its feature matrix to determine

the parameters of model. �us, a�er the grid search, we found optimal values of hyperpa-

rameters and we set the hidden-dimension size of �rst and second neighborhood aggregation
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layers equal to 32 and 64, respectively. Moreover, we de�ned the learning rate equal to 0.01,

the dropout equal to 0.5 and the number of epochs equal to 500.



Chapter 6

Results

6.1 Experimental Setup

Performance measurements were collected from simulation experiments on the Azure com-

puter (Section 1.3.4), taking advantage of its resources like its GPU, its CPU and its memory

space. �e Scikit-learn library does not provide GPU support to run its estimators, so it does

not exploit the bene�ts of GPU in machine learning. �e training of baselines takes place, using

the CPU of the computer. �us, the only manner to decrease the training time of Scikit-learn

models is using multiple CPU cores to parallelize the operations of estimators. We ran all the

baseline models, parallelizing them using either the total number of the cores or a subset of the

cores. In our case, in some baselines it was impossible to exploit the full capabilities of CPU

due to the lack of memory space and due to the high memory requirements of the speci�c

estimators. It is reasonable that the parallelism of an operation in multiple cores increases the

requirements in memory capacity, decreasing the computational time. On the other hand, we

built our main approaches i. e., MLP, custom deep learning neural network (CDL) and GNN,

using PyTorch library. For the running of MLP and CDL we took advantage of the Azure ma-

chine’s GPU, dramatically reducing the computational times of their training. In contrast, for

the training of GNN we used the CPU because we could not feed our model on GPU due to its

size and the limitations of GPU memory. �us, GNN’s training time is quite long, especially in

comparison with MLP’s and CDL’s time.

For the training of the baselines we used their default hyperparameters, whereas for neural

network models we intensively searched their hyperparameters. Particularly, we applied grid

97
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search and k-fold validation to mainly determine the size of hidden layers and the dropout rate.

For MLP, we set the number of hidden neurons equal to 32 and the dropout equal to 0.3, while

for CDL, we set the size of �rst, second and third cluster of neurons equal to 128. Moreover, we

de�ned the size of the second hidden layer equal to 128 and the dropout equal to 0.3. Finally,

for GNN we have two neighborhood aggregation layers of which hidden-dimension size is set

to 32 and 64, respectively. Moreover, we de�ned the dropout equal to 0.5. �e initial learning

rate is set to 0.01 for all neural network models. Generally, we trained all the neural network

models with the same number of epochs so that their results are comparable.

We conducted experiments on both graphs that are described in Section 3.3 and Section 3.4,

using di�erent implementations of the datasets. We used two di�erent subsets of graph metrics

and three di�erent construction methods of abstract embeddings. Speci�cally, using MLP and

the Graph 35, we tested di�erent subsets of graph features to �nd the one that outperforms the

others in prediction task of h-index. �is subset consists of PageRank, onion layers, Laplacian

centrality, degree centrality, core number, local clustering centrality, the neighbor’s average

degree, the number of triangles and the diversity coe�cient. We refer to this subset of graph

metrics, the node embeddings and the top 10 features as ”best features”. Whereas, we call the

top 10 features, the node embeddings and the whole set of graph metrics as ”default features”.

We can observe that the two graph features di�er only in the fact that the best features do

not contain the community-based mediator, the community-based centrality, the degree and

eigenvector centrality. Moreover, we used the four di�erent implementations of top 10 fea-

tures (see 4.1) in our experiments to compare them and examine which edition of them has

be�er performance and which construction method of abstract embeddings represents more

accurately the abstract and its words. In order to test the semi-supervised generalization capa-

bilities of our model, we experimented with a 20/80 and a 10/90 training/test split. Generally,

we conducted the majority of tests with a 80/20 training/test split. In our experiments we

compared all these three ratios of splits. We conducted most of the experiments on both Graph

35 and Graph engineering.

In all of our experiments, we applied standardization of samples, before we fed them as an

input in our models, either the baselines or more complex (main models). For this process

we used the StandarScaler method of Scikit-learn library. �is implementation standardizes

features by removing the mean and scaling to unit variance. �e standard score of a sample x

is calculated as:

z =
(x− u)

s
(6.1)
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where u is the mean of the training samples, and s is the standard deviation of the training

samples. Centering and scaling happen independently on each feature by computing the rel-

evant statistics on the samples in the training set. Standardization of a dataset is a common

requirement for many machine learning estimators; they may have functional di�culties if

the individual features do not, more or less, look like standard normally distributed data (e. g.,

Gaussian with 0 mean and unit variance). For instance, many elements that were used in the

objective function of a learning algorithm assume that all features are centered around 0 and

have variance in the same order. If a feature has a variance that is orders of magnitude larger

than others, it might dominate the objective function and make the estimator unable to learn

from other features correctly, as expected. Unscaled input variables can result in a slow or

unstable learning process, while unscaled target variables on regression problems can result

in exploding gradients causing the learning process to fail [100].

6.2 Experimental Results

�e smaller the mean squared error (MSE) and the mean absolute error (MAE), the be�er the

accuracy of our models and their performance on the prediction of the h-index. MAE and MSE

values close to zero indicate that the performance of the models is exceptional.
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Method
Given h-index Calculated h-index

Abstract embeddings method
MAE MSE MAE MSE

LinearSVR

12.267 319.687 12.455 330.828 SIF gensim Word2Vec

12.180 313.802 12.376 324.957 SIF gensim FastText

12.17 313.548 12.364 324.781 SIF default FastText

Decision Tree

12.968 348.676 12.575 334.563 SIF gensim Word2Vec

12.821 342.804 12.436 330.664 SIF gensim FastText

12.833 345.086 12.435 327.166 SIF default FastText

SGDRegressor

12.691 301.730 12.871 310.376 SIF gensim Word2Vec

12.545 295.297 12.731 304.322 SIF gensim FastText

12.541 295.138 12.737 304.393 SIF default FastText

Lasso

10.652 210.208 10.473 203.911 SIF gensim Word2Vec

10.481 204.679 10.303 198.399 SIF gensim FastText

10.462 204.263 10.280 197.791 SIF default FastText

ElasticNet

9.334 165.454 9.115 157.980 SIF gensim Word2Vec

8.942 151.367 8.686 142.864 SIF gensim FastText

8.920 150.595 8.668 142.323 SIF default FastText

Gradient Boosting Regressor

9.374 169.329 9.185 163.454 SIF gensim Word2Vec

9.190 163.223 8.973 156.657 SIF gensim FastText

9.234 164.995 9.023 158.404 SIF default FastText

XGBoost

9.375 174.017 9.192 169.011 SIF gensim Word2Vec

9.220 168.865 9.008 162.320 SIF gensim FastText

9.264 169.943 9.062 164.209 SIF default FastText

MLP

8.820 156.317 8.501 148.149 SIF gensim Word2Vec

8.263 139.387 7.868 128.567 SIF gensim FastText

8.159 135.971 7.854 124.751 SIF default FastText

CDL

7.804 129.305 7.425 116.870 SIF gensim Word2Vec

7.338 113.677 6.913 100.380 SIF gensim FastText

7.267 112.398 6.928 100.993 SIF default FastText

GNN

9.289 179.367 9.081 172.730 SIF gensim Word2Vec

8.965 165.199 8.697 157.470 SIF gensim FastText

8.931 164.409 8.684 156.830 SIF default FastText

Table 6.1: Performance of the di�erent methods in Graph 35 in the given h-index versus the
calculated h-index prediction task, training on default features.



101

Method
Given h-index Calculated h-index

Abstract embeddings method
MAE MSE MAE MSE

LinearSVR

4.565 56.660 4.845 62.350 SIF gensim Word2Vec

4.489 55.361 4.716 61.246 SIF gensim FastText

4.477 55.196 4.706 61.102 SIF default FastText

Decision Tree

5.089 58.014 5.109 60.224 SIF gensim Word2Vec

5.007 56.605 5.130 58.682 SIF gensim FastText

5.015 56.657 5.095 58.652 SIF default FastText

SGDRegressor

4.811 51.028 5.131 56.008 SIF gensim Word2Vec

4.742 50.223 4.977 55.242 SIF gensim FastText

4.733 50.234 4.971 55.270 SIF default FastText

Lasso

4.251 37.431 4.301 39.601 SIF gensim Word2Vec

4.186 36.661 4.273 38.582 SIF gensim FastText

4.131 35.937 4.206 37.658 SIF default FastText

ElasticNet

3.580 26.955 3.624 28.002 SIF gensim Word2Vec

3.471 25.426 3.544 26.443 SIF gensim FastText

3.456 25.248 3.527 26.265 SIF default FastText

Gradient Boosting Regressor

3.484 26.342 3.507 27.170 SIF gensim Word2Vec

3.401 25.223 3.457 26.088 SIF gensim FastText

3.390 25.037 3.443 25.920 SIF default FastText

XGBoost

3.515 27.383 3.581 28.245 SIF gensim Word2Vec

3.458 26.672 3.507 27.686 SIF gensim FastText

3.441 26.443 3.499 27.441 SIF default FastText

MLP

3.493 29.292 3.522 29.523 SIF gensim Word2Vec

3.343 26.979 3.341 26.586 SIF gensim FastText

3.305 25.448 3.293 25.292 SIF default FastText

CDL

3.041 21.280 3.034 21.135 SIF gensim Word2Vec

2.897 19.129 2.888 19.772 SIF gensim FastText

2.896 19.390 2.879 18.953 SIF default FastText

GNN

3.630 31.801 3.717 33.479 SIF gensim Word2Vec

3.508 29.663 3.612 31.369 SIF gensim FastText

3.503 29.656 3.596 31.823 SIF default FastText

Table 6.2: Performance of the di�erent methods in Graph engineering in the given h-index
versus the calculated h-index prediction task, training on default features.
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(a) (b) (c)

Figure 6.1: Performance of each model in Graph 35 comparing the accuracy of the prediction
of the given h-index to that of the calculated h-index with the use of method: (a) SIF gensim
Word2Vec (b) SIF gensim FastText (c) SIF default FastText, for the generation of the abstract

embeddings

(a) (b) (c)

Figure 6.2: Performance of each model in Graph engineering comparing the accuracy of the
prediction of the given h-index to that of the calculated h-index with the use of method: (a)
SIF gensim Word2Vec (b) SIF gensim FastText (c) SIF default FastText, for the generation of

the abstract embeddings

(a) (b)

Figure 6.3: Performance of each model in (a) Graph 35 and (b) Graph engineering comparing
the di�erent methods of construction of the abstract embeddings

�e performance of the di�erent models is illustrated in Table 6.1 for the Graph 35 and in Ta-

ble 6.2 for the Graph engineering. We report the mean absolute error (MAE) and the mean
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squared error (MSE) of the di�erent approaches for predicting either the given h-index or

the calculated h-index. �e models on these experiments were trained using the default fea-

tures and di�erent construction methods of the abstract embeddings that were concatenated

to create the top 10 features. Basically, each abstract embeddings method illustrates a di�erent

technique of generation of word embeddings, as for the creation of abstract embeddings we

use the same method. Hence, we can conclude to the method of word embeddings’ construc-

tion that gives us be�er results. With regards to the performance of the di�erent approaches

from Table 6.1, we �rst observe that MLP and CDL outperform the other approaches in all

se�ings and by considerable margins. On the other hand, the GNN is disappointing as Elastic

Net has a be�er performance than GNN and also, Gradient Boosting Regressor and XGBoost

have slightly worse results than GNN. Also, we can understand that the best model is the CDL,

while three from the baseline models: the XGBoost, the Elastic Net and the Gradient Boosting

Regressor have an impressive performance. Moreover, we can observe that almost all mod-

els, except for LinearSVR and SGDRegressor, have be�er performance when they are trained

and predict the calculated h-index. We hypothesize that these two models are a�ected by the

Nystroem method which is applied to their inputs before training. Finally, we can notice that

both Gensim’s FastText and the original FastText outperform Gensim’s Word2Vec in all cases.

In Table 6.2 we can observe again that the best model is the CDL, while in this case MLP is

slightly worse than Gradient Boosting Regressor in all experiments. We also see that XGBoost

and Elastic Net perform be�er than MLP in terms of MSE in all se�ings. While, the MLP

slightly outperforms XGBoost in terms of MAE. �is situation may be reasonable as XGBoost

optimizes the MSE criterion, while the neural architectures are trained by minimizing a MAE

objective function. Also, this reduced performance of MLP may be due to the initialization

of its weights. In the case of Graph engineering it is clear that Elastic Net, Gradient Boost-

ing Regressor and XGBoost outperform GNN. Once again, Gensim’s FastText and the original

FastText outperform Gensim’s Word2Vec in all cases. However, in the case of Graph engineer-

ing none of models have be�er performance when they are trained and predict the calculated

h-index.
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Method
Default Features Best Features

Abstract embeddings method
MAE MSE MAE MSE

MLP

8.820 156.317 8.736 155.127 SIF gensim Word2Vec

8.263 139.387 8.239 137.700 SIF gensim FastText

8.159 135.971 8.181 138.546 SIF default FastText

CDL

7.804 129.305 7.803 130.604 SIF gensim Word2Vec

7.338 113.677 7.342 113.168 SIF gensim FastText

7.267 112.398 7.288 112.698 SIF default FastText

GNN

9.289 179.367 9.289 179.650 SIF gensim Word2Vec

8.965 165.199 8.967 165.651 SIF gensim FastText

8.931 164.409 8.932 165.012 SIF default FastText

Table 6.3: Performance of the proposed methods in Graph 35 in the h-index prediction task,
training with the default features versus the best features.
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Method
Default Features Best Features

Abstract embeddings method
MAE MSE MAE MSE

MLP

3.493 29.292 3.453 27.098 SIF gensim Word2Vec

3.343 26.979 3.337 26.217 SIF gensim FastText

3.305 25.448 3.299 25.290 SIF default FastText

CDL

3.041 21.280 3.035 22.409 SIF gensim Word2Vec

2.897 19.129 2.882 19.494 SIF gensim FastText

2.896 19.390 2.890 19.685 SIF default FastText

GNN

3.630 31.801 3.623 31.742 SIF gensim Word2Vec

3.508 29.663 3.509 29.837 SIF gensim FastText

3.503 29.656 3.501 29.647 SIF default FastText

Table 6.4: Performance of the proposed methods in Graph engineering in the h-index pre-
diction task, training with the default features versus the best features.

(a) (b) (c)

Figure 6.4: Performance of the proposed model in Graph 35 comparing the accuracy of train-
ing with the default features versus the training with the best features with the use of method:
(a) SIF gensim Word2Vec (b) SIF gensim FastText (c) SIF default FastText, for the generation

of the abstract embeddings
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(a) (b) (c)

Figure 6.5: Performance of the proposed model in Graph engineering comparing the accuracy
of training with the default features versus the training with the best features with the use
of method: (a) SIF gensim Word2Vec (b) SIF gensim FastText (c) SIF default FastText, for the

generation of the abstract embeddings

�e performance of three neural network models trained on the default features and the best

features is illustrated in Table 6.3 for the Graph 35 and in Table 6.4 for the Graph engineering.

We report the mean absolute error (MAE) and the mean squared error (MSE) of the di�er-

ent approaches. �e models on these experiments were trained using di�erent construction

methods of the abstract embeddings that were concatenated to create the top 10 features. In

both Table 6.3 and Table 6.4, we can observe that CDL outperforms the other approaches in all

se�ings and by considerable margins. Also, the MLP has be�er performance than GNN. Once

again, Gensim’s FastText and the original FastText are more e�cient than Gensim’s Word2Vec

in all se�ings. Finally, we see that the di�erence in the performance of the two features is in-

signi�cant and these can be considered as equals. �e slightest di�erence that exists between

the two features, can be developed due to the initialization of weights.
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Method
80% training-20% test 20% training-80% test 10% training-90% test Abstract embeddings

MAE MSE MAE MSE MAE MSE method

MLP

8.820 156.317 9.271 174.683 9.655 188.691 SIF gensim Word2Vec

8.263 139.387 8.627 153.240 9.032 162.053 SIF gensim FastText

8.159 135.971 8.575 149.150 9.011 163.521 SIF default FastText

CDL

7.804 129.305 8.547 151.981 8.884 161.250 SIF gensim Word2Vec

7.338 113.677 8.032 133.528 8.473 146.845 SIF gensim FastText

7.267 112.398 8.126 137.772 8.412 144.604 SIF default FastText

GNN

9.289 179.367 9.700 190.375 10.147 202.671 SIF gensim Word2Vec

8.965 165.199 9.334 175.354 9.881 190.872 SIF gensim FastText

8.931 164.409 9.306 173.731 9.851 189.196 SIF default FastText

Table 6.5: Performance of the proposed methods in Graph 35 in the h-index prediction task,
training and testing on di�erent splits of dataset.

Method
80% training-20% test 20% training-80% test 10% training-90% test Abstract embeddings

MAE MSE MAE MSE MAE MSE method

MLP

3.493 29.292 3.652 31.665 3.843 34.133 SIF gensim Word2Vec

3.343 26.979 3.539 30.687 3.609 31.932 SIF gensim FastText

3.305 25.448 3.464 27.907 3.595 31.080 SIF default FastText

CDL

3.041 21.280 3.243 24.170 3.416 27.646 SIF gensim Word2Vec

2.897 19.129 3.085 22.832 3.219 24.525 SIF gensim FastText

2.896 19.390 3.139 23.912 3.254 25.009 SIF default FastText

GNN

3.630 31.801 3.896 36.513 4.231 85.410 SIF gensim Word2Vec

3.508 29.663 3.825 39.900 4.114 54.535 SIF gensim FastText

3.503 29.656 3.818 37.355 4.074 71.756 SIF default FastText

Table 6.6: Performance of the proposed methods in Graph engineering in the h-index
prediction task, training and testing on di�erent splits of dataset.
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(a) (b) (c)

Figure 6.6: Performance of the proposed model in Graph 35 comparing the accuracy of di�er-
ent ratios of split of datasets with the use of method: (a) SIF gensim Word2Vec (b) SIF gensim

FastText (c) SIF default FastText, for the generation of the abstract embeddings

(a) (b) (c)

Figure 6.7: Performance of the proposed model in Graph engineering comparing the accuracy
of di�erent proportions of split of datasets with the use of method: (a) SIF gensim Word2Vec
(b) SIF gensim FastText (c) SIF default FastText, for the generation of the abstract embeddings

�e performance of three neural networks models trained on three di�erent ratios of splits of

dataset is illustrated in Table 6.5 for the Graph 35 and in Table 6.6 for the Graph engineering.

We report the mean absolute error (MAE) and the mean squared error (MSE) of the di�erent

approaches. �e models on these experiments were trained on the default features and di�er-

ent construction methods of abstract embeddings. In both Table 6.5 and Table 6.6, we observe

that CDL outperforms the other approaches in all se�ings and by considerable margins. Also,

the MLP has be�er performance than GNN. Furthermore, Gensim’s FastText and the original

FastText o�er us be�er accuracy than Gensim’s Word2Vec in all se�ings. Finally, we see that

the performance of the three models slightly decreases as the split ratio changes and the pro-

portion of samples of the test set increases. It appears that the performance of the GNN is more

a�ected by the split ratios than the other two models.
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Case MAE MSE

Only graph metrics 10.084 206.836

Only node embeddings 9.595 185.174

Only top 10 features 11.601 282.398

No node embeddings 9.263 175.473

No top 10 features 8.657 153.906

No graph metrics 10.501 226.580

top 1 features 8.677 155.810

top 3 features 8.721 157.986

top 5 features 8.868 162.043

Table 6.7: Performance of the MLP model in Graph 35 in the h-index prediction task in
di�erent cases (1).

Figure 6.8: Performance of MLP model inGraph 35 in the h-index prediction task in di�erent
cases (1).

In Table 6.7 we see the performance of MLP model in the case of nine di�erent feature sets. We

report the mean absolute error (MAE) and the mean squared error (MSE) of the di�erent cases.

�e models on these experiments were trained on the default features of Graph 35 and the top

10 features that were constructed by concatenating the SIF gensim Word2Vec. Generally, in

these experiments we alternate the default features by removing some feature sets or changing

the top 10 features. We observe that by training the model exclusively with node embeddings,
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give us be�er performance than training it with only the graph features or with the top 10

features. On the contrary, when MLP was trained on only top 10 features, it had the worst

performance. �us, removing the top 10 features, the model has be�er accuracy than it has

when we remove any other set of features. �e features extracted from the authors’ papers do

not seem to capture the actual impact of the author. It is indeed hard to determine the impact of

an author based solely on the textual content of a subset of the papers the author has published.

Furthermore, these features have been produced from a limited number of an author’s papers,

and therefore, they might not be able to capture the author’s relation with similar authors

because of the diversity of scienti�c abstracts and themes. Finally, the last three rows depict

the results of MLP using only the top 1 cited paper or the concatenation of the top 3 or 5 cited

papers, instead of the top 10. We notice that the features of top 1, the node embeddings and the

graph features give us be�er performance than the top 3 or top 5 features. Also, we see that the

performance of using the features of top 1 is identical to the performance of the model when

it was trained only with node embeddings and graph metrics. Moreover, the performance of

these two cases (i. e., the case of top 1 features and the case of node embeddings and graph

metrics ) is slightly similar with the accuracy of the model when it was trained with the top 10

features, the node embeddings and the graph features (i. e., default dataset without removing

any features set).

Case MAE MSE

Average abstract embeddings(W2V) 8.784 159.502

SIF abstract embeddings(W2V) 8.775 158.446

SIF FastText n-grams 8.249 140.529

SIF FastText 8.223 138.425

Table 6.8: Performance of the MLP model in Graph 35 in the h-index prediction task in
di�erent cases (2).

In Table 6.8 we see the performance of MLP model in the case of four di�erent construction

methods of abstract embeddings. We report the mean absolute error (MAE) and the mean

squared error (MSE) of the di�erent cases. �e models on these experiments were trained on

the default features of Graph 35 and the top 10 features that were constructed by concatenat-

ing either the SIF abstract embedding or the average abstract embeddings, which both were

created using Word2Vec’s word embeddings. Also, we have the case where the top 10 features
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were created by concatenating either the SIF gensim FastText or the SIF FastText n-grams. �e

di�erence of these two methods is that the �rst one omits the words that are not in the vocab-

ulary, without taking them into account during the construction of abstract embeddings. On

the contrary, the second method uses the character n-grams to generate the word embedding

of an out-of-vocabulary word. �us, words that are not included in vocabulary are consid-

ered during the construction of abstract embeddings. As we can observe by the Table 6.8, the

SIF abstract embeddings method has similar performance with average abstract embeddings.

�e same situation occurs with SIF FastText n-grams and SIF FastText. �ere is no reason to

mention their di�erences because they are negligible. It is possible that the depicted di�erence

occurs due to the initialization of the weights of the model.

Method
Computational time (in seconds)

Graph 35 Graph engineering

LinearSVR 0.5 0.4

Decision Tree 386.4 141.6

SGDRegressor 15.6 8.43

Lasso 27.6 7.15

ElasticNet 772.8 239.62

Gradient Boosting Regressor 7,248 2,767.34

XGBoost 192 84.43

MLP 405 115

CDL 1,750 750

GNN 6,000 1,000

Table 6.9: Computational time of models.

�e Table 6.9 depicts the computational time of our models (both baselines and the proposed

models) for the training on Graph 35 and on Graph engineering. We observe that LinearSVR

requires the least amount of time for its training but it has the poorest performance in the



112

prediction of the h-index. Moreover, the table con�rms the superiority of XGBoost’s speed to

Gradient Boosting Regressor’s. We also notice the di�erence in running time between CDL

model and GNN model due to the fact that GNN was trained by using the CPU, while CDL was

trained by using the GPU. Finally, the table illustrates that the CDL model runs at a remarkable

time in addition to its superiority in performance.

To qualitatively assess the e�ectiveness of the proposed models, we selected ten random au-

thors from each of our graphs. �eir given and calculated h-index along with the predictions

of the CDL model are shown in Table 6.10 for the authors of the Graph 35. While, Table 6.11

indicates the h-index and calculated h-index along with the predictions of the CDL model for

the authors of the Graph engineering. �e CDL model was trained using the default features

and it was selected because it was the model with the best performance in prediction task of

h-index. Keeping in mind that the overwhelming majority of authors of Graph engineering

have a relatively small h-index (as has been observed in Figure 3.4) and that the h-index of

the authors of Graph 35 has a great variance, including extremely cases of authors with high

h-index. It is clear that these are some of the most extreme and hard cases which can pose a

signi�cant challenge to the proposed models. Even though the objective function of the pro-

posed models is MAE which does not place more weight on large errors (which can happen

for authors that have high h-index values), still, as can be seen in Table 6.10 and Table 6.11,

the models’ predictions are relatively close to the actual h-index values of the authors in most

cases.
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Author Given h-index Predicted given h-index Calculated h-index Predicted calculated h-index Abstract embeddings method

Richard E. Rothschild 36 36.514 39 34.817 SIF gensim Word2Vec

Richard E. Rothschild 36 39.613 39 31.972 SIF default FastText

Richard E. Rothschild 36 39.931 39 32.863 SIF gensim FastText

V. Grigoriev 42 42.017 55 54.049 SIF gensim Word2Vec

V. Grigoriev 42 45.315 55 48.013 SIF default FastText

V. Grigoriev 42 38.453 55 50.655 SIF gensim FastText

D. Alhamdan 8 13.052 8 13.919 SIF gensim Word2Vec

D. Alhamdan 8 8.999 8 8.2 SIF default FastText

D. Alhamdan 8 11.796 8 11.681 SIF gensim FastText

G. Contin 42 21.023 39 31.146 SIF gensim Word2Vec

G. Contin 42 28.203 39 30.598 SIF default FastText

G. Contin 42 24.443 39 30.56 SIF gensim FastText

Anna �it Johnsen 10 24.916 11 24.535 SIF gensim Word2Vec

Anna �it Johnsen 10 14.302 11 14.503 SIF default FastText

Anna �it Johnsen 10 14.587 11 14.607 SIF gensim FastText

B. Fadem 22 22.26 27 28.486 SIF gensim Word2Vec

B. Fadem 22 26.214 27 27.411 SIF default FastText

B. Fadem 22 24.012 27 29.005 SIF gensim FastText

W. A. Hornsby 12 15.529 13 19.073 SIF gensim Word2Vec

W. A. Hornsby 12 18.144 13 15.79 SIF default FastText

W. A. Hornsby 12 15.717 13 16.501 SIF gensim FastText

Karl Eugen Hauptmann 32 22.604 31 29.76 SIF gensim Word2Vec

Karl Eugen Hauptmann 32 26.514 31 26.8 SIF default FastText

Karl Eugen Hauptmann 32 25.853 31 27.535 SIF gensim FastText

J. Russ 80 71.009 89 91.925 SIF gensim Word2Vec

J. Russ 80 75.737 89 90.363 SIF default FastText

J. Russ 80 74.266 89 85.927 SIF gensim FastText

David L. Joyce 14 13.408 15 17.702 SIF gensim Word2Vec

David L. Joyce 14 17.054 15 15.125 SIF default FastText

David L. Joyce 14 13.001 15 11.705 SIF gensim FastText

Table 6.10: �e actual given and calculated h-index of a number of authors of Graph 35 and
their predicted given and calculated h-index.
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Author Given h-index Predicted given h-index Calculated h-index Predicted calculated h-index Abstract embeddings method

Catalin Florin Petre 9 6.556 9 5.845 SIF gensim Word2Vec

Catalin Florin Petre 9 9.503 9 9.625 SIF default FastText

Catalin Florin Petre 9 9.113 9 11.798 SIF gensim FastText

Dmitry Bilalov 2 2.996 3 4.873 SIF gensim Word2Vec

Dmitry Bilalov 2 4.087 3 4.391 SIF default FastText

Dmitry Bilalov 2 3.818 3 4.785 SIF gensim FastText

Haibin Ning 7 5.611 8 8.21 SIF gensim Word2Vec

Haibin Ning 7 4.676 8 6.653 SIF default FastText

Haibin Ning 7 5.206 8 4.929 SIF gensim FastText

Sergio Lemaitre 10 5.624 11 6.463 SIF gensim Word2Vec

Sergio Lemaitre 10 6.386 11 6.056 SIF default FastText

Sergio Lemaitre 10 4.92 11 4.918 SIF gensim FastText

Cley Anderson Silva De Freitas 5 2.353 5 3.477 SIF gensim Word2Vec

Cley Anderson Silva De Freitas 5 3.042 5 3.323 SIF default FastText

Cley Anderson Silva De Freitas 5 3.294 5 4.566 SIF gensim FastText

Alexei V. Ivanov 12 22.639 16 22.844 SIF gensim Word2Vec

Alexei V. Ivanov 12 22.02 16 25.426 SIF default FastText

Alexei V. Ivanov 12 21.279 16 25.838 SIF gensim FastText

Wen Zhixun 2 3.154 3 3.472 SIF gensim Word2Vec

Wen Zhixun 2 2.393 3 2.423 SIF default FastText

Wen Zhixun 2 2.616 3 3.345 SIF gensim FastText

T. Sahraoui 5 7.202 10 9.8 SIF gensim Word2Vec

T. Sahraoui 5 8.245 10 10.49 SIF default FastText

T. Sahraoui 5 9.66 10 10.361 SIF gensim FastText

Ashkan Nabavipelesaraei 10 6.533 15 8.933 SIF gensim Word2Vec

Ashkan Nabavipelesaraei 10 9.282 15 8.21 SIF default FastText

Ashkan Nabavipelesaraei 10 7.455 15 9.956 SIF gensim FastText

F. T. Turner 19 9.518 17 11.729 SIF gensim Word2Vec

F. T. Turner 19 13.733 17 7.463 SIF default FastText

F. T. Turner 19 14.612 17 13.313 SIF gensim FastText

Table 6.11: �e actual given and calculated h-index of a number of authors of Graph engi-
neering and their predicted given and calculated h-index.

6.3 Learning Curves of Neural Networks

In this section we present the learning curves of the three proposed neural networks for dif-

ferent proportions of split. �e models were trained with the default features in Graph 35 and

by using the method of SIF gensim Word2Vec for the creation of the abstract embeddings.
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(a) (b) (c)

Figure 6.9: �e learning curve of the MLP for di�erent ratios of split of training and testing
sets: (a) 80-20 (b) 20-80 (c) 10-90

(a) (b) (c)

Figure 6.10: �e learning curve of the CDL for di�erent ratios of split of training and testing
sets: (a) 80-20 (b) 20-80 (c) 10-90

(a) (b) (c)

Figure 6.11: �e learning curve of the GNN for di�erent ratios of split of training and testing
sets: (a) 80-20 (b) 20-80 (c) 10-90

From the Figure 6.9, we notice that the MLP model has a tendency to over�t as its validation

curve increases when its training curve decreases. �e situation becomes worse as the split

ratio rises. On the other hand, for the CDL in the case of 80-20 split, the gap of its two curves

is wide. �e problem here is that the validation curve remains stable while the training curve

decreases, making the gap more extended. From the Figure 6.10 (a) seems like a case of high

variance and low bias, thus our model over�ts as the epochs proceed. �e same situation
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remains as we change the proportion of split of training and testing sets. Nonetheless, the

CDL model performs extremely well during the testing phase and especially in the case of

Graph 35, where the h-index of its authors has a large variance. On the contrary, the GNN

model seems to generalize and avoid over��ing in the case of 80-20 split. Its validation curve

converge towards its training curve and the gap becomes narrow, showing a good �t. However,

the GNN model had the worst performance in the h-index prediction task between the neural

network models. Also, we observe that the model is a�ected the least by the changes on the

split ratio of training and testing sets compared to the other two models. However, it also

over�ts as the proportion of split is increased. Finally, all of our models tend to over�t as the

split ratio is increased. Over��ing is especially expected in cases like these where learning was

performed too long or where training examples are rare, causing the learner to adjust to very

speci�c random features of the training data that have no causal relation to the target function.

Particularly, in our case as we reduce the training examples the model can not generalize, as

the training set consists of about 3000 samples that may represent very rare or extreme cases.

Fortunately, during the training we save the hyperparameters that achieve the best accuracy

in the validation set to use them later in the testing phase.

6.4 Summary of Experiments

�e proposed CDL model outperforms by considerable margins all the other approaches in

both a supervised and a semi-supervised se�ing (i. e., when the training data is scant or not

trustworthy, which is an o�en case in bibliographic data). Whereas, the other two proposed

models (MLP and CDL) have a be�er performance from standard approaches in terms of mean

absolute error in a supervised se�ing. Eventually, GNN had a poor performance in all of our

experiments. In the majority of tests, it was less accurate than the XGBoost, the Gradient

Boosting Regressor and the Elastic Net. �ese three baseline models had a remarkable perfor-

mance even against the MLP which was marginally the second-best model. Adding an extra

fully connected layer or a more complex neural network may enhance the e�ciency of GNN.

From the results that are presented in Table 6.7 it is obvious that the top 10 features do not pro-

vide us with supplementary information for the graph. On the contrary, this feature contributes

the slightest to the training of models. Probably, this condition may exist due to spelling mis-

takes in the abstracts’ words of datasets or because during the pre-process of the �le of abstracts

we had to separate the compound words to remove incorrectly created compound words such
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as ”katrina-and”. �us, we inevitably are incapable to acquire all the knowledge that may be

represented by the abstract.

Furthermore, the results in Table 6.3, Table 6.4, Table 6.1 and Table 6.2 show that our models are

more accurate to predict the h-index on Graph engineering than on Graph 35. �is situation

may occur because Graph engineering is created by authors of the same �eld of study. �ere-

fore, its structure is more compact, more recognizable and enlightening, so it is straightforward

to extract and represent e�ciently the information encoded by its structure and the relations

between nodes than on Graph 35. Also, it is possible that the top 10 features contribute more

on Graph engineering than Graph 35, because they represent information by papers of a spe-

ci�c �eld of study. Moreover, due to the biased structure of Graph 35, the models may not be

able to learn and comprehend the pa�erns of data correctly. Essentially, Graph 35 comes from

a larger graph with more edges, many of which have been removed to create our �nal graph.

So, we have a lack of information, as we do not have all the information of its structure and

of collaborations between its authors. �e most prominent reason why our models are more

accurate to predict the h-index in Graph engineering than in Graph 35 is due to the variance of

the authors’ h-index. In Graph engineering the variance and the mean of the authors’ h-index

is much smaller than these of the authors of Graph 35. �us, this situation is advantageous

for our models to produce more precise predictions for the case of Graph engineering, as the

measured values (i. e., the predicted value and the target value ) are consistently low, their

di�erence remains low and the error in Graph engineering will stay reduced. Finally, from

Figure 3.3 we observe that in some cases the h-index of the authors of Graph 35 takes large

values that can be considered as outliers that a�ect the performance of our models.

�e prediction of calculated h-index on Graph 35 gives us be�er accuracy than that of the given

h-index, while on Graph engineering the reverse is true. �is result can simply be related to

the data of MAG. Graph 35 data may be more reliable than engineering data. It is possible

that there is more information about the papers of authors of Graph 35 than these of authors

of Graph engineering. Maybe there are more missing papers of authors of Graph engineering

than that of authors of Graph engineering and also probably the citations of the papers of

authors of Graph 35 may be be�er updated than those of Graph engineering. �us, we may

compute the calculated h-index for Graph 35 more e�ciently than for Graph engineering.

�e top 10 features are created by concatenating the abstract embeddings of the top 10 cited

papers. Hence, the information of the top 10 features is essentially the knowledge that the
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concatenated abstract embeddings represent. On the other hand, the abstract embeddings are

generated by using the word embeddings, so the accurate and correct construction of word

embeddings is the key to represent reliably the abstract embeddings and consequently the

top 10 features. It is obvious that the concatenation of abstract embeddings created using

the word embeddings of FastText perform be�er than the concatenation of the corresponding

abstract embeddings created using the word embeddings of Word2Vec. �us, FastText can

be�er represent the words of abstracts than Word2Vec can, acquiring more information about

the structure of abstracts.

Finally, the di�erence in the performance between the SIF abstract embeddings and the average

abstract embeddings was negligible, despite the fact that the SIF abstract embeddings should

have 5% be�er performance than average abstract embeddings[2]. �is result may occur due

to the initialization of the weights of the models.



Chapter 7

Conclusions & Future Work

7.1 Summary

To sum up, as the scienti�c community grows rapidly over the last few years, more and more

papers are published. �erefore, the need to evaluate the signi�cance and the credibility of

papers is imperative and at the same time the ability to assess the impact and the success

of their authors. In recent decades various metrics have been proposed for the evaluation of

scientists, with the h-index metric being the most prevalent. �e h-index is an indicator that

quanti�es both the in�uence of a scientist and the importance of his or her work. Scientists

collaborate with many other researchers to publish a paper. So, a network of co-authorships is

constructed, which helps us to understand and analyze the relations between researchers. Due

to this immense increase in the number of scientists and of the published papers, it is essential

to collect all this knowledge. For this reason, many academic databases have been created

like Scopus and Google Scholar. Despite this e�ort, it is challenging for scienti�c databases

to ensure reliable and continuous updating of their collection. In various situations there is a

lack of data, many papers of a scientist are missing, and in some papers the citations may not

have been recently updated. Additionally, there is o�en a dispersion of information, where

a researcher’s publications are on di�erent sites or academic databases and not gathered on

the same site. �us, it becomes di�cult to properly calculate the h-index and the impact of a

scientist.

119
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�is thesis statement successfully a�empted to contribute to this demand by suggesting an

e�cient solution to the problem. In this undergraduate dissertation, we developed three neu-

ral networks to deal with the problem of predicting authors’ h-index based on information

extracted from the co-authorship network and the abstract embeddings of the authors’ pa-

pers. For our experiments we created two di�erent types of graphs to examine more aspects of

this problem. Firstly, we constructed a graph based on the �eld of engineering and secondly,

we created a network with authors from di�erent �elds of study provided that they have at

least 35 collaborations with a scientist. Analyzing these two graphs, we extracted their node

embeddings and their graph metrics. Using this information in conjunction with the abstract

embeddings we trained our machine learning models. We used seven baseline models as a yard-

stick to measure the performance of our proposed approaches. Our suggested estimators are a

basic neural network, more speci�cally a MLP model, a custom deep learning neural network

(CDL) and a Graph neural network (GNN). �e proposed CDL model outperforms by consider-

able margins all the other approaches in both a supervised and a semi-supervised se�ing. On

the contrary, our proposed GNN did not meet our expectations, performing worse than some

baselines. �e performance of MLP was quite remarkable, as it performs more accurately than

the other baselines. Also, from our experiments we concluded that the creation of abstract em-

beddings using FastText improves the prediction of the h-index rather than using Word2Vec.

Finally, we observed that the forecast of the h-index is more accurate on Graph engineering

than on Graph 35 and that the top 10 features contribute less to the training of models than

the other features. All the codes described in this thesis can be found at the following link:

h�ps://github.com/iakovos777/Thesis-statement.

7.2 Limitations

�e limitations of this study are based mainly on errors on the initial datasets. A widespread

problem of Microso� Academic Graph is the disambiguation of �eld of study, where many au-

thors are categorized on the wrong �eld of study. �is problem does not a�ect immediately our

project. �e only possible issue is that some authors of the Graph engineering should not actu-

ally be included in it, because they normally belong to another �eld of study. However, MAG’s

datasets have another major problem which a�ects our study. �e ”PaperAbstractsInverte-

dIndex” �le has some spelling mistakes due to the wrong pre-processing of data by Microso�.

�ere are some wrong words, which appear as a unit, while they should be two di�erent words.

https://github.com/iakovos777/Thesis-statement
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An example of this situation is the appearance on the �le an incorrect word, like ”question-

about” or ”tomaintaining”. It is obvious that this issue arises because a white space is missing

between the word ”question” and the preposition ”about” or between the preposition ”to” and

the word ”maintaining”. Usually, the wrong words are the union of a preposition with a noun.

We have this error only in some papers, while in others these words appear correctly i. e., in

the majority of papers the preposition ”to” appears separately from the noun ”maintaining”.

�us, the problem is important because some stop words like the preposition ”to” will not been

removed during the data cleaning of the �le. Additionally, there is an urgent issue with the

representation of the words as the correct words will be considered di�erent from their wrong

words. �us, a di�erent word embedding will be assigned to them. �e context of the mis-

spelled words will not be taken into account during the extraction of the representation of the

correct words, so the word embeddings of the actual words will not be correctly created.

We a�empted to solve the problem by trying a variety of Python libraries like PyEnchant or

NTLK or TextBlob. �e most suitable library was the PyEnchant which detected and corrected

the misspelled words by separating them. Nevertheless, it also corrected scienti�c terms (e. g.,

the term ”pcr” was converted to ”pct”) as they were detected as misspellings, due to the fact

that these words were not included in the vocabulary of the library. Hence, we abandoned this

solution as we would lose the essential information that is included on scienti�c terms, as these

words can determine the �eld of study of a paper and consequently of its author. Finally, due

to some errors on the initial dataset of Microso� Academic Graph we had to clean and correct

some fake compound words like ”disaster-hurricane” or ”Katrina-and”, which are located to

the ”PaperAbstractsInvertedIndex” �le. �erefore, we had to break all compound words into

its synthetics. We created di�erent word embeddings for each synthetic of a compound word

and also, during the creation of word embeddings we considered that a compound word has the

same meaning with its synthetics (considering that the context of the compound word is also

context for each synthetic), leading basically to the generation of incorrect word embeddings.

7.3 Future Work

In a future study it is necessary to �nd a method to solve the problem of misspelled words using

an automated way without detecting and correcting scienti�c terms. �is solution has to solve

the issue of both the misspelled words and the fake compound words, without breaking all the

actual compound words. So, we have to focus on the creation of precise word embeddings,
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which can o�er us improved results on the prediction task of the h-index. Moreover, we wish

to examine more the node embeddings, conducting supplemental experiments to �nd the more

e�cient combination of hyperparameters p and q that will enhance the Node2Vec algorithm

to extract more information about the nodes of a graph. Furthermore, we plan to investigate

how multiple paper representations can be aggregated in the model, instead of computing the

concatenation of the top ones. Finally, we intend to conduct experiments on a large-scale graph

with authors by multiple �elds of study and to expand our models in order to apply them to

link prediction task, forecasting future possible links between authors in the co-authorship

network.
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